

MONTANA

AVIATION SYSTEM PLAN -2015 UPDATE PAVEMENT CONDITION INDEXES

A.I.P. 3-30-0000-013-2015 Prepared for

Montana Department of Transportation -Aeronautics Division

2630 Airport Road P.O. Box 200507 Helena, Montana 59620-0507 (406) 444-2506

January 2016

Prepared by Robert Peccia & Associates

825 Custer Ave. P.O. Box 5653 Helena, MT 59604 (406) 447-5000

Page No.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1	Project Description	1-1
1.2	The Pavement Management System	1-5
1.3	Scope of Services	1-6

CHAPTER 2 PROJECT APPROACH

2.1	Project Description	. 2-1
2.2	Network and Sample Definition	. 2-1
2.3	Pavement Condition Surveys	. 2-5
2.4	Pavement Condition Index (PCI)	. 2-5
2.5	PCI Calculations	.2-6
2.6	Pavement Families	. 2-8
2.7	Family Analyses	.2-10

CHAPTER 3 RESULTS AND RECOMMENDATIONS

Family Analysis Curves	. 3-1
PCI Predictions	. 3-3
System-Wide Pavement Conditions	. 3-10
Maintenance Priorities	. 3-11
Maintenance Practices	.3-16
Maintenance and Rehabilitation Planning	. 3-17
Other PAVER Reports	. 3-22
Continued MocroPAVER Implementation	. 3-22
	PCI Predictions System-Wide Pavement Conditions Maintenance Priorities Maintenance Practices Maintenance and Rehabilitation Planning Other PAVER Reports

CHAPTER 4 AIRPORT REPORT SUMMARIES

4.1	Introduction	4-1
4.2	Inspection Report Summaries	4-1
4.3	Maintenance Report Summaries	4-1
4.4	Inspection Photos	4-2
4.5	FAA Form 5320-1	4-2
4.6	Reports	4-2

APPENDIX A

APPENDIX B

Pavement Distress - Descriptions, Causes, Classification & Repair

LIST OF TABLES AND FIGURES

TABLES

Page	No.
------	-----

1.1	Montana's Pavement Management System - 2015 Update	1-2
2.1	Selection of Minimum Number of Sample Units	2-2
2.2	Example Sample Unit Selection	2-3
2.3	Selection Category Criteria	2-9
2.4	Section Properties and Family Assignments	2-12
3.1	Summary of PCI Ratings	3-5
3.2	Pavement Projected to go Subcritical, by Pavement Area	3-12
3.3	Pavement Projected to go Subcritical, by % of Each Airport's Pavement Area	3-14
3.4	% of Each Airport's Pavement with 2016 Subcritical PCI	3-15
3.5	First Year Localized Maintenance Policies	3-20
3.6	First Year Localized Maintenance Costs	
3.7	Example First Year Repair Consequences	3-21
3.8	Global Maintenance Costs and Consequences	3-21
3.9	Effective Major M&R Priorities	3-21
A.1	Asphalt Pavement Distresses	. A-1
A.2	Portland Cement Pavement Distresses	. A-2
A.3	Asphalt Pavement Distresses by Causes	. A-3
A.4	Concrete Pavement Distresses by Causes	. A-3
A.5	Sections Omitted from 2015 PCI Survey	. A-4
A.6	AC – First Year Repair Consequences	. A-8
A.7	PCC – First Year Repair Consequences	. A-9

FIGURES

		-
1.1	Montana Airports' Pavement Database Map	
2.1	Concrete and Asphalt Pavement Inspection Sheets	
2.2	PCI Calculations	
2.3	ACPL - Asphalt Pavements with less than 12,500 lb. Load Rating	
2.4	STPA - Bituminous Surface Treated Pavements of All Load Ratings	
2.5	ACAH - Asphalt Aprons with Higher than 30,000 lb. Load Rating	
2.6	ACRH - Asphalt Runways and Taxiways with Higher than 30,000 lb	
2.7	ACRML - Asphalt RWs and TWs, Load Rating 12,500 to 30,000 lb	
2.8	ACRMU -Asphalt RWs and TWs, Load Rating 12,500 to 30,000 lb	
2.9	ACAM - Asphalt Aprons with Load Rating from 12,500 to 30,000 lb	
2.10	PCAA - Portland Concrete Cement - All Sections	
2.11	ACPS - Asphalt Pavements with Seasonal Usage	
2.12	Pavement Life Cycle	
3.1	PAVER PCI Prediction Process	
3.2	System-Wide Pavement Condition Ratings	
3.3	Extended Pavement Life Cycle	
3.4	Cost by PCI Assumptions	
A.1	Family Comparisons	A-11
A.2	PAVER 3.21 "Limit to Budget" Flow Diagram	A-13

ABBREVIATIONS

AAC	Pavement surface type - structural asphalt overlays of asphalt
AC	Pavement surface type - asphalt / hot mix / plant mix bituminous surface course
ACAH	Pavement Family - asphalt aprons with higher than 30,000 lb. load rating
ACAM	Pavement Family - asphalt aprons with load rating from 12,500 to 30,000 lb.
ACPL	Pavement Family - asphalt pavements with less than 12,500 lb. load rating
ACPS	Pavement Family – asphalt pavements experiencing only seasonal operation (dormant during winter)
ACRH	Pavement Family - asphalt runways & taxiways with higher than 30,000 lb. load rating
ACRML	Pavement Family - asphalt RWs & TWs, load rating 12,500 to 30,000 lb, 5000 or fewer ops.
ACRMU	Pavement Family - asphalt RWs & TWs, load rating 12,500 to 30,000 lb, over 5000 ops.
Agg	Aggregate / gravel as a manufactured structural layer of a pavement section
AIP	Airport Improvement Program - FAA funding for airport maintenance and construction
APC	Pavement surface type - structural asphalt overlays of concrete
BST	Pavement surface type - biturinous surface treatments / single shot / double shot / triple shot
FAA	Federal Aviation Administration
FAA AC	Federal Aviation Administration, Advisory Circular
FOD	Foreign object debris. Loose material on a pavement surface that could cause aircraft damage
Form 5320-1	
	FAA-format for an airport pavement map with construction and maintenance history
GA	General Aviation
Global	Maintenance policy applied to the whole pavement (e.g. fog seals, overlays)
Н	High - degree of severity for an asphalt defect
HLN/ADO	FAA's Helena Airports District Office
L	Low - degree of severity for an asphalt defect
L & T CR	Longitudinal and transverse cracking
LF	Linear foot (unit of length)
Local	Maintenance policy applied to small sections of a pavement (e.g. crack seal, patching)
М	Medium - degree of severity for an asphalt defect
M&R	Maintenance and rehabilitation
MAD	Montana Aeronautics Division
Major <crit< td=""><td>Reconstruction of a pavement after its condition has dropped below the critical PCI</td></crit<>	Reconstruction of a pavement after its condition has dropped below the critical PCI
Major>Crit	Reconstruction of a pavement before its condition has dropped below the critical PCI
MDT	Montana Department of Transportation
Ν	No degree of severity for an asphalt defect is defined, the defect is either present or not
NWM	FAA's Northwest Mountain Region
Ops	Aircraft operations (takeoff or landing)
P-152	FAA designation for compacting native soils
P-154	FAA designation for subbase gravel
P-208	FAA designation for basecourse gravel
P-209	FAA designation for crushed basecourse gravel
P-401	FAA designation for plant-mix bituminous pavement (asphalt)
P-403	FAA designation for small quantities of plant-mix bituminous pavement (asphalt) with less testing
P-501	FAA designation for Portland cement concrete surface course
P-609	FAA designation for an application of asphalt binder / emulsion to a pavement surface
PCAA	Pavement Family - Portland Concrete Cement - All sections
PCC	Pavement surface type - Portland cement concrete
PCI	Pavement condition index
PFC	Porous Friction Course
PREV.	Preventative maintenance
RW	Runway
SF	Square foot (unit of area)
ST	Pavement surface type - bituminous surface treatments / single shot / double shot / triple shot
STA	Station - formatted distance with implied direction used by surveyors
STPA	Pavement Family - bituminous surface treated pavements of all load ratings
TW	Taxiway
USACERL	U.S. Army Corps of Engineers Construction Engineering Research Laboratory
XX	Indicates an inspection and PCI rating were completed for a pavement previous to its reconstruction
	r · · · · · · · · · · · · · · · · · · ·

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 PROJECT DESCRIPTION

This project, the 2015 Update to the Montana Aviation System Plan, continues development of a Pavement Management System for Montana's general aviation airports. This is an ongoing process begun in 1988 and updated on a three-year cycle since then. The Aeronautics Division of the Montana Department of Transportation, in coordination with the Federal Aviation Administration, Helena Airports District Office, contracted with Robert Peccia and Associates (RPA) to provide the surveys and analysis required for the on-going development of the State's airport pavement management system. RPA subcontracted with Applied Research Associates, Inc. (ARA) to complete PAVER database manipulations.

The pavement management system is designed to be a systematic, and objective tool for determining maintenance and rehabilitation needs and priorities. It is intended to provide better information to airport and aviation officials, so that Federal, State, and local resources can be more efficiently allocated toward maintaining and improving airport pavements. Primary airports complete their own inspections and planning. The Pavement Condition Index (PCI) provides a standard scale for comparing the existing operational condition and structural integrity of airport pavements. The pavement management system's PCI provides a rational basis for justifying pavement replacement or rehabilitation projects. It can also provide feedback on pavement performance to validate or revise pavement design, construction, and maintenance procedures.

The project consists of airport pavement records updates, map updates (FAA Form 5320-1), pavement condition surveys, PCI calculations, PCI analyses, PCI predictions, maintenance suggestions, and maintenance budget projections. This final report documents work completed, assesses system-wide conditions and potential, and recommends work for future updates to the pavement management system. Inspection results, PCI values, predictions, maintenance suggestions, and a brief interpretation of the results are provided directly to the sponsor for each airport. Results are provided to the Montana Aeronautics Division and the Federal aviation Administration (FAA).

RPA updated airport maps and pavement records (FAA Form 5320-1) for all fifty-nine (59) general aviation airports in Montana's database. RPA personnel completed intensive field inspections of pavement samples and collected data at fifty (50) of these airports to identify current and estimate future pavement conditions. ARA forecast pavement deterioration at all Montana database airports at 1-, 5-, and 10-years using the Pavement Condition Index.

RPA completed field surveys in accordance with the criteria specified in Federal Aviation Administration (FAA) Advisory Circular AC 150/5380-6 "Guidelines and Procedures for Maintenance of Airport Pavements". Calculations, analysis, and predictions were completed using the U.S. Army Corps of Engineers Construction Engineering Research Laboratory's (USACERL) "MicroPAVER" software system (version 6.5.7).

Table 1.1 and Figure 1.1 show the airports surveyed and analyzed in this project.

FAA

	2015	2015	FAA Form 5220_1	DCI
Airport (Database Branch Number)	Inspection Report	Inspection Photos	5320-1 Update	PCI Predict.
Anaconda Airport (09)	X	Х	X	Х
Baker Airport (56)	Х	Х	Х	Х
Benchmark Airport (11)			Х	Х
Big Sandy Airport (18)			Х	Х
Big Timber Airport (25)	Х	Х	Х	Х
Broadus (62)	Х	Х	Х	Х
Chester, Liberty County Airport (15)	Х	Х	Х	Х
Chinook Airport (58)	Х	Х	Х	Х
Choteau Airport (19)	Х	Х	Х	Х
Circle, McCone County Airport (38)	Х	Х	Х	Х
Colstrip Airport (48)	Х	Х	Х	Х
Columbus (59)	Х	Х	Х	Х
Conrad Airport (46)	Х	Х	Х	Х
Culbertson Airport, Big Sky Field (34)	Х	Х	Х	Х
Cut Bank Airport (13)	Х	Х	Х	Х
Deer Lodge City-County Airport (08)	Х	Х	Х	Х
Dillon Airport (52)	Х	Х	Х	Х
Ekalaka Airport (57)	Х	Х	Х	Х
Ennis Big Sky Airport (50)	Х	Х	Х	Х
Eureka Airport (54)	Х	Х	Х	Х
Forsyth Airport, Tillit Field (43)			Х	Х
Fort Benton Airport (60)			Х	Х
Gardiner Airport (64)			Х	Х
Glasgow International Airport (31)	Х	Х	Х	Х
Glendive, Dawson Community Airport (40)			Х	Х
Hamilton, Ravalli County Airport (06)	Х	Х	Х	Х
Hardin (66)			Х	Х
Harlem Airport (17)	Х	Х	Х	Х
Harlowton, Wheatland County Airport (22)			Х	Х
Havre City-County Airport (16)	Х	Х	Х	Х

TABLE 1.1MONTANA'S PAVEMENT MANAGEMENT SYSTEM - 2015 UPDATE

TABLE 1.1 (contd.)MONTANA'S PAVEMENT MANAGEMENT SYSTEM - 2015 UPDATE

Airport (Database Branch Number)	2015 Inspection Report	2015 Inspection Photos	FAA Form 5320-1 Update	PCI Predict.
Jordan Airport (37)	X	Х	X	Х
Laurel Municipal Airport (27)	Х	Х	Х	Х
Lewistown Airport (21)	Х	Х	Х	Х
Libby Airport (01)	Х	Х	Х	Х
Lincoln Airport (12)	Х	Х	Х	Х
Livingston Airport (24)	Х	Х	Х	Х
Malta Airport (61)	Х	Х	Х	Х
Miles City Airport, Frank Wiley Field (42)	Х	Х	Х	Х
Plains, Penn Stohr Field (63)	Х	Х	Х	Х
Plentywood, Sherwood Airport (36)	Х	Х	Х	Х
Polson Airport (03)	Х	Х	Х	Х
Poplar Airport (65)	Х	Х	Х	Х
Ronan Airport (53)	Х	Х	Х	Х
Roundup Airport (47)	Х	Х	Х	Х
Scobey Airport (35)	Х	Х	Х	Х
Shelby Airport (14)	Х	Х	Х	Х
Sidney-Richland Municipal Airport (39)	Х	Х	Х	Х
Stanford Airport (20)	Х	Х	Х	Х
Stevensville Airport (05)	Х	Х	Х	Х
Superior, Mineral County Airport (04)	Х	Х	Х	Х
Terry Airport (41)	Х	Х	Х	Х
Thompson Falls Airport (02)	Х	Х	Х	Х
Three Forks Airport (49)	Х	Х	Х	Х
Townsend Airport (55)	Х	Х	Х	Х
Turner Airport (29)	Х	Х	Х	Х
Twin Bridges Airport (51)			Х	Х
West Yellowstone Airport (10)	Х	Х	Х	Х
White Sulphur Springs Airport (23)	Х	Х	Х	Х
Wolf Point Airport (32)	Х	Х	Х	Х

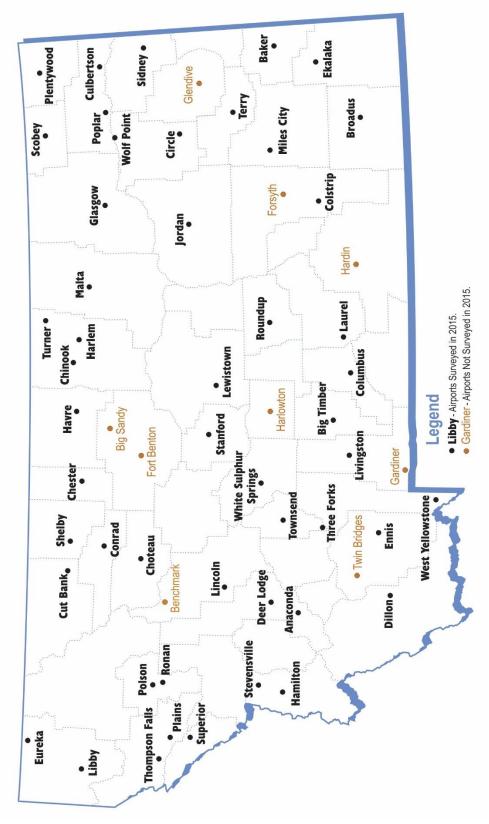


FIGURE 1.1 MONTANA AIRPORTS' PAVEMENT DATABASE MAP

1.2 THE PAVEMENT MANAGEMENT SYSTEM

A pavement management system begins with an objective, repeatable method for determining present pavement condition. This project uses the Pavement Condition Index (PCI) developed at the US Army Corps of Engineering Research Lab (USACERL). The PCI is a numerical index from 0 to 100 that describes the pavement's overall structural integrity and operational condition, with 100 assigned to a flawless pavement and zero to a highly degraded pavement. The PCI is based on the types, severities, and quantities of pavement distresses identified during on-site visual inspections.

A computerized database called PAVER is used to store, manipulate, and present data that generates PCI values. This program was developed at USACERL specifically for use with the PCI. The PAVER system is continually being improved and upgraded by Engineered Management Systems Software and is periodically reissued in a new version. Montana's pavement management system typically uses a recent release of the software. The newer software has strived to enhance analysis and reporting tools, refine analysis routines, and improve the operator-computer interface. The current upgrade is a Windows-based program with reasonably easy data transfer and query routines. For this report PAVER output was refined and supplemented using Microsoft Word, Microsoft Excel, and Microsoft Access to improve readability and formatting.

As with any pavement management system, the following tasks are required to adequately document the process, obtain the required data, and generate meaningful results.

- → Assemble background data about the pavements to be studied.
- \rightarrow Prepare and update base maps, define the study areas.
- \rightarrow Conduct field inspections of random samplings of the pavement surface.
- \rightarrow Process the field inspection and background data.
- → Analyze the data and generate appropriate reports.

The process begins with reviewing airport records to locate the pavements to be studied. Background information such as materials, thicknesses, construction dates, primary use (runway/taxiway/apron), surface area, and related data is assembled. This data is then used to divide pavements into a successively refined network by geographic location, functional use, consistency of characteristics, and manageable inspection size.

Each airport is considered a separate "zone" in Montana's airport database. Each zone (airport) is then divided by function or primary use into "branches." All aprons are grouped into a single branch, all taxiways into another branch, and each runway is placed in a separate branch. Branches are further divided into "sections" with similar characteristics. Each section is defined as a pavement of consistent age, construction materials, and maintenance history. Finally, since sections are generally still large pavement areas, each is divided as evenly as possible into "sample units." This last division of asphalt-surfaced areas into near 5000 square foot samples, and concrete-surfaced areas into near 20-slab samples is designated for convenient, manageable, and statistically valid pavement inspection.

After obtaining background information and dividing the pavements into zones, branches, sections, and sample units, the database network is created and base maps are drawn to document this network structure. FAA Forms 5320-1, "Pavement Strength Survey" are revised and used as guides during field surveys. Base map layout is confirmed (or adjusted) on-site during visual pavement inspection.

As field inspections are completed, distress data is loaded into the PAVER program. Pavement Condition Indexes are calculated providing a numerical rating of present condition by section. Sections are grouped by similar construction, strength, and primary use into "families" of pavements which should experience similar wear, deterioration, and useful lives. The PCI inspection history of all pavements in a family are used to generate a pavement life cycle curve which can then be used to forecast PCI's for all member pavements in the family.

Finally, when the desired analyses have been completed, numerous reports can be generated to describe the pavement systems, their existing conditions, their approximate future conditions, and potential costs to improve performance and extend pavement life.

1.3 SCOPE OF SERVICES

The scope of services required for this phase of the pavement management system development consists of the following:

- → Collecting and updating airport geometric and pavement condition information for fifty (50) airports. The FAA recommended skipping airports with new or impending construction, including: Big Sandy, portions of Cut Bank, Forsyth, Fort Benton, Glendive, Harlowton, portions of Miles City, and Twin Bridges. Benchmark and Gardiner were left out due to their advanced age. Striving to make the most efficient use of the available inspection budget, the following three rules were applied to select pavement sections at each remaining airport:
 - Sections smaller than 30,000 square feet were not inspected, since they typically do not "trigger" a paving project.
 - Pavement sections with a 2009 PCI value less than 55 were not surveyed, assuming that they would now be in need of reconstruction.
 - If applying the previous two rules eliminated all aprons or taxiways from the airport, one representative apron and/or taxiway was inspected at the airport.

All omitted sections are listed in Table A.5 in Appendix A.

- → Locating Construction or Record Drawings and updating base maps (FAA Form 5320-1) for the 50 inspection airports. Maps for the remaining 9 airports were revised where possible, and included in the report. These maps were produced in AutoCAD and transferred to the more readily accessible Adobe PDF format. Hard copy and digital format maps are project deliverables.
- → Defining pavement zones, branches, sections, and sample units for any reconstruction, or new construction of airside pavements.

- → Conducting visual condition surveys at 50 general aviation airports located throughout the State of Montana, loading the survey data into PAVER, and obtaining current PCI values for each section.
- → Developing "Family Analysis Curves" that allow modeling of pavement performance by grouping similar pavements, then using the group's behavior to predict future pavement conditions.
- → Updating the State's PAVER database, analyzing pavements, and producing summary reports for each airport studied.
- → Delivering ten copies of a Final Report, organized and bound in a three-ring binder with cover graphics, table of contents, and appendices.
- ➔ Producing Adobe PDF versions of the project report for inclusion on MDT Aeronautics Division's website.
- → Mailing pavement analysis results and recommendations for individual airports directly to airport managers.

CHAPTER 2 PROJECT APPROACH

CHAPTER 2 PROJECT APPROACH

Work on this project began with a review of previous reports produced for the Montana Aviation System Plan – PCI Updates. Since consistency is extremely important to periodic pavement condition surveys, the pavement definitions, naming conventions, and recommendations from previous studies were incorporated into this project to the extent possible.

2.1 PROJECT DESCRIPTION

Airport construction information was collected for airports within the project scope that received FAA Airport Improvement Program (AIP) funds in fiscal years 2009-2015. Pavement information was reviewed and updated for construction since 2009 for each of the study airports. This information was obtained from airport layout plans (ALP), construction plans, FAA Form 5320-1, design reports, the 2015 Montana Airport Facility Directory, airport sponsors, and in some cases, directly from the engineer in charge of construction. When available records did not agree with completed construction, our inspection teams collected as-built dimensions in the field to update maps and re-defined sample sections on the fly.

All of the information obtained was used to prepare and/or update schematic maps for each airport, using FAA Form 5320-1 as a base. The maps show pavement locations, dimensions, composition, and dates of construction.

2.2 NETWORK AND SAMPLE DEFINITION

Each airport's pavement network consists of airside pavements that the Owner is responsible for maintaining. In each case, the airport's pavement was assigned to a zone. It was then divided into branches (facilities), sections (features), and sample units as defined by PAVER procedures and those of FAA Advisory Circular, AC 150/5380-7, "Airport Pavement Management Program (PMP)".

Once the updated base maps depicting the location of sections and sample units were prepared, the minimum number of sample units (n) that needed to be surveyed to obtain an adequate estimate of the section PCI was determined. The required number of sample units was estimated using the procedure defined in Attachment A of the Northwest Mountain Region (NWM) handout, entitled "Selection of Minimum Number of Sample Units". This is reproduced in Table 2.1. The number of sample units selected provides for a 92% probability that the estimate of the mean section PCI is within +/- 5 points of the true mean PCI.

At least one sample more than the NWM recommendation was inspected on each runway section. This provided additional accuracy for the sections most likely to drive airport maintenance or improvement projects. Samples were selected with the intent of overlapping one sample with a recent previous survey to aide in verifying consistent inspection techniques.

Flexible Pavement			Rigid Paveme	nt
N=1	n=1		N=1	n=1
N=2	n=2		N=2	n=2
N=3-6	n=3		N=3-4	n=3
N=7-13	n=4		N=5-6	n=4
N=14-38	n=5		N=7-8	n=5
N>38	n=6		N=9-11	n=6
			N=12-14	n=7
			N=15-19	n=8
			N=20-27	n=9
			N=28-38	n=10
			N=39-58	n=11
			N=59-104	n=12
			N=105-313	n=13
			N>313	n=14

TABLE 2.1SELECTION OF MINIMUM NUMBER OF SAMPLE UNITS

N = Number of sample units in a pavement section or feature

 $(\pm 5,000 \text{ sq. ft. per sample unit for asphalt pavements}, \pm 20 \text{ slabs for Portland Cement Concrete pavements})$ n = Number of sample units to be surveyed

Reference: Northwest Mountain Region handout, "Pavement Condition Survey Program", (6/11/88 HLN/ADO)

After the number of sample units to inspect was determined, particular sample units to inspect were chosen using "systematic random sampling". The method is described here, followed by an example in Table 2.2.

- 1) All the sample units within a section are numbered consecutively.
- 2) The sampling interval (I) is computed with the equation I=N/n, where N = total number of sample units in a section, n = the minimum number of sample units to be surveyed (from Table 2.1). The sampling interval (I) can be rounded up or down to a whole integer.
- The first sample unit "s", is selected at random from numbers 1 through sampling interval (I).
- 4) Sample units to be inspected are identified as s, s+I, s+2I, s+3I, etc..

Sample units were selected before arriving at the site and inspections were conducted on the preselected sample units to avoid biasing the sample. In some cases systematic random sampling was not used either due to a decidedly "non-random" interaction of sample numbers and systematic survey points that concentrated sampling in a small area, or due to an effort to sample previously un-sampled areas. The Anaconda example below illustrates the most common sample selection variations. Runway 16-34, designated "R-1", has few previously sampled areas, so the

recommended systematic random sampling is used. Standard systematic random sampling is also used for T-1 in 2015. A variant "paired sample" systematic random sampling was used on taxiway T-1 in 2006 to pick-up several samples with no historical inspection. Section A-1 had samples selected entirely at random, for a good geometric distribution. Finally, on apron area A-2, samples were selected to include several previously uninspected samples, then completing the selection with geometrically disbursed samples. On aprons and other areas where some locations may see much more wear than others, it is more important to get a good geometric distribution of samples, than to get a numerically random sampling.

TABLE 2.2 EXAMPLE SAMPLE UNIT SELECTION

Section Number	Total # of Sample Units (N)	Minimum # of Units to Inspect * (n)	Sample Spacing** (I = N/ n)	Random Start # (s)	Sample Units to Survey (s,s+i,s+2i, etc.)	Actual Sample Units Surveyed
R-1	92	$6 + 1 = 7^{\dagger}$	13		8,21,34,47,60,73,86	8,21,34,47,60,73,86
			or		or	
			14		8,22,36,50,64,78,92	
T-1	20	5	3	2	2,5,8,11,14,17	
			or			
			4	1	1,5,9,14,18	1,5,9,14,18
			or			
		Paired sar	nple variant us	ed in 2006	4,5, 9,10, 16	
A-1	9	4	2	1	1,3,5,7, 9 (used in '97)	1,3,7,9
				2	2,4,6,8 (used in '94)	
			or			
			3	1	$1,4,7,\frac{10}{10}$ (along one edge	- not used)
A 2	17	5	3	3	2 (0 12 15 / 1	
A-2	17	5		3	3,6,9,12,15 (along one e	dge – not used)
			or 4	2	2,6,10,14,18,17 (varian	t used in (02)
			4 or	2	2,0,10,14,10,17 (Varian	it used iii (05)
			stly un-inspecte ead out across			2,4,8,12,16

* Table 2.1, or engineer's judgement

** Rounded up or down to a whole number

[†] Robert Peccia & Associates' engineers chose to increase sampling frequency by 1 on all runways, to provide a higher probability of an accurate PCI assessment on this most critical airport pavement.

The airport base maps (FAA Form 5320-1) show the sections and sample units defined for each airport. Sample units selected for evaluation in the various project years are marked with different hatch patterns as shown in the map legend. Sample units selected for evaluation in the 2015 Update are marked with a dot pattern.

и и Вине заме сосс и и и и	SAMPLE RAMPLE AREA
x	H H H H H H H

2.3 PAVEMENT CONDITION SURVEYS

Visual condition inspections were conducted in general accordance with the procedure outlined in Appendix C of the FAA Advisory Circular 150/5380-7, "Airport Pavement Management Program (PMP)". The survey confidence level was reduced from 95% to 92% in accordance with the Northwest Mountain Region handout, "Pavement Condition Survey Program", (6/11/88 HLN/ADO).

Detailed visual inspections were conducted on paved surfaces at each of the airports selected for this project during the period August 2015 through October 2015. The sections defined on base maps were verified, or revised if necessary. Sample units to be surveyed were temporarily marked on the pavement. Visual inspections were conducted measuring types, severities, and quantities of pavement distresses while walking over each selected sample unit. Distresses were recorded on inspection sheets like those shown in Figure 2.1. Individual pavement distress types and severities were identified using USACERL generated PCI Field Manuals for asphalt surfaced airfields and jointed concrete airfields (see Appendix C of the FAA Advisory Circular 150/5380-7). Photographs documenting overall condition and/or specific distresses were taken during the field surveys and are included in Chapter 4. Sample selection strives to select "representative" areas, *but photos were often selected to show extreme (and possibly atypical) distresses*.

After consulting with M. Y. Shahin, MicroPaver's lead development engineer, two adjustments to previous field inspections were initiated beginning in 2000. Alligator cracking within one foot of the pavement edge was recorded as longitudinal cracks, and distresses recorded as "block cracking" in 1997 were reduced to longitudinal /transverse cracks. On larger airports, sections can be chosen to separate runway edge conditions from the center with separate PCI's produced for heavily used center and seldom used edges. With smaller GA airports, it's impractical to subdivide runway width, so edge failure can drive the PCI of a runway significantly below what its center section would warrant. Down-grading the type of distress recorded for edge failure better represents the quality of the commonly used portion of the pavement. Large, rectangular blocks seen on a few of Montana's airports were judged to be just off the block cracking continuum, and recording them as Block Cracking at multiple airports. RPA's 2015 inspections found no block cracking at any Montana airports. These two changes brought Montana's pavement management system more in line with PAVER's empirical research.

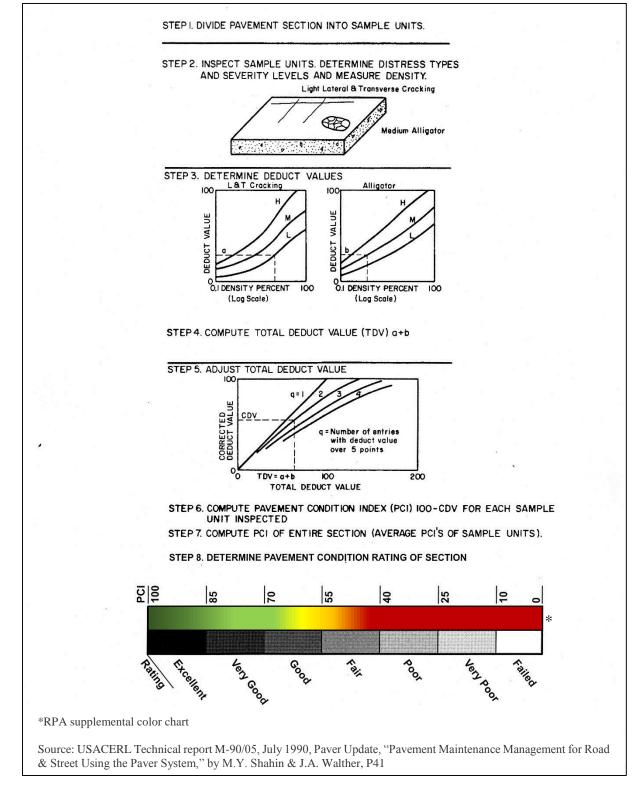
In 2010 the PCI Inspection Manuals and ASTM pavement inspection standards changed, splitting the previous asphalt "weathering/raveling" distress into two separate distresses, and adding Alkali-Silica Reactivity (ASR) to PCC distresses. The modification to "weathering" resulted in a PCI increase of around 5 points at numerous locations.

2.4 PAVEMENT CONDITION INDEX (PCI)

The pavement condition index (PCI) is an objective, repeatable numerical rating or "grade" that describes the overall condition of a pavement section on a scale of 0 (failed pavement) to 100 (perfect pavement). It is based on visual inspections of manageable sample pavement areas for types, severities, and quantities of a number of specific distresses. "Field verification of the PCI inspection method has shown that the index gives a good indication of a pavement's structural

integrity and operational condition. It has also been shown that, at the network level, the observation of existing distress in the pavement provides a useful index of both the current condition and an indication of future performance under existing traffic conditions."¹

2.5 PCI CALCULATIONS


The PCI is produced for each surveyed sample unit with a series of calculations using the area of the sample and quantities of standard distress types as summarized in Figure 2.2. Pavements are divided into manageable sample areas and a random selection of these are intensively inspected (Figure 2.2, Step 1). Quantities of standardized distress types (descriptions and example photos in Appendix B) and severities are recorded during visual inspections by trained inspectors (Figure 2.2, Step 2). Quantities divided by the sample area give distress density for each type and severity of distress present. Distress densities are transferred to deduct values using composite curves generated from US Army Corps of Engineers pavement research (Figure 2.2, Step 3). The total deduct value is the sum of deducts due to individual distress types and severities (Figure 2.2, Step 4). To reflect the empirical fact that numerous minor defects are not as detrimental to a pavement's condition as a few major defects, this total deduct is scaled back when there are a large number of deducts recorded (Figure 2.2, Step 5). The Pavement Condition Index (PCI) is simply a perfect 100 pavement less the adjusted total deduct value (Figure 2.2, Step 6). The area-weighted average of the sample PCI's is taken as the section PCI (Figure 2.2, Step 7). There are seven discrete groupings of PCI values that describe the overall pavement quality with Pavement Condition Ratings (Figure 2.2, Step 8). The current version of PAVER allows user-defined rating titles & ranges, and suggests that only PCI's above 55 are acceptable, with sub-55 PCI's rated as "poor" to "failed"

In addition to extrapolating PCI's from selected sample areas to larger sections of pavement, distress densities, distress quantities, and deducts are extrapolated for each section and included in the Inspection Report Summary. Extrapolated distress densities are the sum of distress quantities divided by the sum of the sampled areas. Distress densities are both scaled up by the section area to get extrapolated distress quantities, and also fed into the deduct curves to get extrapolated deducts for the section.

While these calculations can be completed by hand, the vast quantity of data collected for Montana's general aviation airports makes it much more feasible to use the PAVER software package developed by USACERL expressly for PCI calculations. PCI's in this report were produced with PAVER 6.5.7 for Windows.

¹ USACERL Technical Report M-90/05, July 1990, Paver Update, "Pavement Maintenance Management for Roads and Streets Using the PAVER System," by M. Y. Shahin & J. A. Walther, p 40.

FIGURE2.2 PCI CALCULATIONS

2.6 PAVEMENT FAMILIES

In order to make sound management decisions, it is necessary to project the future condition of a pavement rather than just calculate the present PCI condition. Comparing the ten airport pavement surveys spanning the last twenty-seven years, it is apparent that a pavement's PCI degrades over time. By grouping pavements with similar properties, it is possible to distill an "average" behavior for the group. The PAVER system calls groupings of like pavements "families." The intent is that grouped pavements will tend to perform similarly as they age. If this grouping is performed successfully, documented behavior of older pavements can be used to project probable behavior for younger pavements as they age. In other words, pavements within the same family should have PCIs that are roughly the same when their ages are the same. The choice of what properties, and ultimately which pavements are used to build a family are determined by the engineer. The number of families needs to be sufficiently large to cover different pavement types while preserving a statistically significant data set from the available survey data.

The database of Montana airports was configured in 1991 for sorting of families by parameters: surface type, primary use, pavement strength, rank, and asphalt thickness to total thickness ratio. In 1997 the medium strength asphalt runways were split into two families by approximate usage, or "operations count". In 2015, two airports that typically spend the winter months under an insulating blanket of snow were pulled out of other families into a family of their own.

Surface types include: asphalt (AC), structural asphalt overlays of asphalt (AAC) or concrete (APC), bituminous surface treatments (ST), and Portland cement concrete (PCC). Concrete pads at the surface were designated "PCC," while those overlaid with asphalt were labeled "APC." When a pavement contained 1" or more of screed-applied asphalt cement coated aggregate it was called "AC," unless it was upgraded to an asphalt overlay of asphalt (AAC) by being overlaid with 1" or more of AC or with greater than 1" of porous friction course (PFC). Single-, double-, and triple-shot surfaces were designated as surface treatments (ST). These bituminous surface treatments (BST) were upgraded to structural strength similar to asphalt and called "AC" when overlaid with 1" or more of P-401, or with greater than 1" of porous friction course (PFC).

Primary uses for airport pavements are aprons, runways, and taxiways. Sections were assigned as "Apron", "Runway", or "Taxiway" based upon their use, and designated on FAA form 5230-1.

Pavement strengths are split into single wheel loads (SWL) of less than 12,500 pounds, 12,500 pounds up to and including 30,000 pounds, and over 30,000 pounds (light, medium, and heavy). Asphalt to total pavement section thickness ratio is set at less than 30%, between 30% and 70% inclusive, and over 70%. Design strength and asphalt thickness/total thickness ratio were encoded into a single character and stored into the database "Section Category" and updated for new construction. While asphalt thickness to total thickness ratio was not used in the final analysis of this report, it facilitated exploration of potential family groupings and could be used in future projects, so was not removed from the database. Pavement sections were assigned to one of ten section categories based on information shown on existing FAA Form 5320-1 for each airport. Unspecified P-609's (BST) were assumed to be double shots and assigned a nominal thickness of 1". Bituminous surface treatments (BST) and porous friction coats (PFC) were given credit for only half their nominal thickness in equivalent asphalt depth. Table 2.3 presents the section categories used and the requirements for each.

Section Category	AC/Total Depth Ratio	Design Strength (Single Wheel Load)
А	< 30%	< 12.5K
В	30% - 70%	< 12.5K
С	> 70%	< 12.5K
D	< 30%	12.5K - 30K
Е	30% - 70%	12.5K - 30K
F	> 70%	12.5K - 30K
G	< 30%	> 30K
Н	30% - 70%	> 30K
I	>70%	> 30K
Р	PCC, non-asphalt surface	

TABLE 2.3SELECTION CATEGORY CRITERIA

"Rank" is used to describe a pavement's status in the database and its use on the airfield. Current database members that remain in use on the airport are designated with an "O". Non-federally funded, abandoned, or demolished pavements are labeled with a rank of "N" or "A". Those sections excluded from inspections and the database by contractual agreement are ranked "E". Only pavements with a rank of "O" were included in the 2015 update calculations and reports, dropping data for abandoned pavements from the era before preventative maintenance. Ranking could be used to prioritize funding allocation to heavy use airfields over lighter use fields, or to apply external budget priorities to maintenance and rehabilitation planning.

In 2000, medium strength runway/taxiways were subdivided by operations estimates into those having 5000 or fewer annual operations (L), and heavy use strips averaging over 5000 ops (U). This separation into "light use" versus "busy" was explored with other groupings, but each lacked sufficient samplings (mostly of older pavements) to produce reliable forecasting. Operations estimates were updated using 2015 FAA 5010-1 forms and rounded to the nearest thousand up to fifteen thousand, then to the nearest 5000 for annual estimates exceeding 15,000.

In 2006, the two families of surface treatment pavements were combined, as were the two primary usages associated with low strength pavement. There were no longer enough pavements in these dwindling families to produce statistically significant groups, nor to require separate estimations.

In 2015, there was sufficient data in the families ACAH and ACRH to identify a collection of PCI points that did not fit the remaining cluster of data. Closer inspection revealed the anomalous data belonged exclusively to Benchmark and West Yellowstone Airport pavements. These two airports are distinguished from other Montana airports in that they are used only seasonally, spending the

winter months under an insulating blanket of snow. It is likely that the snow layer protects the pavements from repetitive freeze-thaw cycling and extends their life significantly. In any event, these pavements were pulled out into their own "seasonal" pavement family.

While a number of other parameters are currently available in the database, few if any would be reasonable sort criteria. There are user definable fields for refining or redefining families as the available data set grows and it becomes possible to use additional delimiters such as "Maintained" vs. "Unmaintained", "Harsh"/"Moderate"/"Minimal" to describe freeze-thaw cycle exposure at the site, or "Below average"/"Average"/"Above Average" historical performance.

2.7 FAMILY ANALYSES

Families were assigned according to surface type, primary use, design strength (using section category values), and operations counts. These selection criteria made the most sense and produced results that fit well with common engineering judgement and measured data. Numerous grouping variations were explored with inferior results. Retaining the majority of the families used in earlier years allows meaningful comparisons with previous surveys. Family curves for all PCI system plans since 1991 are included in Appendix A. The following eight families were defined, and are coded to indicate the combination of selection criteria used for each.

FAMILY NAMES:

ACPL, ACAM, ACRML, ACRMU, ACAH, ACRH, STPA, PCAA, ACPS

FAMILY NAME CODING:

- 1st two letters = surface type
 - AC = all asphalt cement pavements
 - PC = all Portland cement pavements
 - ST = surface treatment
- 3rd letter = primary use
 - A = a prons
 - $\mathbf{R} = \mathbf{runways}$ and taxiways
 - P = all primary uses (aprons, runways, and taxiways)
- 4th letter = design strength / unique exposure
 - A = all strengths
 - L = low strength (< 12.5K, single wheel)
 - M = medium strength (12.5K 30K, single wheel)
 - H = high strength (> 30K, single wheel)
 - S = seasonal use airport
- 5th letter = operations count (where applicable)
 - L = light use (≤ 5000 annual estimated operations)
 - U = busy (over 5000 annual estimated operations, or more than 1 op./daylight hour)

While there is scatter in the data that PCI families are based on, it is well within the limits expected from nearly sixty airports spread across a wide geographic region, with varying traffic loads and maintenance practices. While maintenance is great for airport pavements, the inspections that follow produce an upward spike in the pavements' "life cycle curve." These increases in PCI's over historical values create a certain amount of unavoidable "scatter" in the data. Likewise, a

thin overlay, or crack sealant will likely acquire distresses (or "age") much more quickly than the original pavement; this steeper rate of decline also generates data scatter. There are a few pavement sections that exhibit an increase in successive PCI's, as well as a few with precipitous drops due to failed sealant, a transition from "cracking" to "alligator cracking", or use by a heavy vehicle that produces "rutting".

To compensate for the scatter we must realistically expect from the variations in the airport system, the database of accumulated PCI inspection results is "screened" by removing statistical outliers and large deviations from known "typical" aging behavior. PAVER performs statistical analysis and can be directed to remove "outliers" from data prior to constructing a family curve. Pavement sections that are at the extremes of the pavement performance spectrum were removed from the data set used to construct the representative family curves. Engineers at ASA used engineering judgement acquired over years of experience to filter out abnormal pavement wear, maintenance spikes, and lapses in construction records. A combination of factors may conspire to rapidly degrade a specific pavement -- excess moisture destabilizing the subgrade, poor construction practices, abuse, or overloading. Another branch could have all the luck (and care) - solid subgrade, conscientious construction, light usage, and wintering the freeze-thaw cycles under an insulating blanket of snow. The Engineer used experience and judgement to select from the current data set to produce families that are well-suited to predicting future PCIs.

Table 2.4 on the following pages summarizes pavement section data from FAA 5320-1 forms, uses it to assign section categories and surface types, and then determines the family assignment for each section in the Montana airports database. This table has been updated to include approximate annual operations counts and documents the use of geotextiles in the pavement section. Table 2.4 includes all the information used to construct the current family groups, and additional data that could be used for future groupings.

PAVER gives the user great flexibility in defining families. The user is also free to redefine families at any time, since family definition plays a very important part in PCI predictions. As the pavement management system continues to develop, better family definitions may become apparent, and they should be revised accordingly.

After families have been defined and each pavement section is assigned to the appropriate family, PAVER generates "Family Analysis Curves." These are PCI verses Age curves derived from a least-squares adjustment of all data points selected to form the family. Graphically speaking, each time a PCI evaluation of a section is completed, that section's PCI is plotted against its Age, forming a single data point (or observation) on that section's family analysis curve. The model is further constrained by insisting that a pavement cannot improve its condition over time (without outside intervention), so a family curve can never rise in PCI with age. The least squares adjustment then yields a single curve that is most representative of the data. In lieu of better information, the life cycle curve for pavement ages greater than any sampled in the family group is assumed to continue at the same rate of decay as at the last data point. In other words, the PCI predictions follow the straight-line tangent to the curve at the oldest pavement life.

	Projec
y	Project Approach
1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
L	
L	
L	
L	
1	
1	
U	

			0				ND FAMIL I	1100	10110		0				
Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth		Pavement Strength	Section Category		Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Anaconda	A-1	5			9	3		9	3	25%	12.5	D	Apron	AC	ACAM
Anaconda	A-2	5			9.7	4		9.7	4	29%	12.5	D	Apron	AC	ACAM
Anaconda	R-1	5			9	3	2.8	9	5.75	39%	16	Е	Runway	AAC	ACRML
Anaconda	R-2	5			9	4	3	9	7	44%	18	Е	Runway	AAC	ACRML
Anaconda	T-1	5			9	3	2.8	9	5.8	39%	16	Е	Taxiway	AAC	ACRML
Anaconda	T-6	5	g		9	4		9	4	31%	12.5	Е	Taxiway	AC	ACRML
Baker	A-2A	7			11	2	5.3	11	7.25	40%	12.5	Е	Apron	AAC	ACAM
Baker	A-5	7	f	18	16	4		34	4	11%	12.5	D	Apron	AC	ACAM
Baker	R-1	7		12	12	5	4	24	9	27%	17.5	D	Runway	AAC	ACRMU
Baker	R-2	7			10	5		10	5	33%	17.5	Е	Runway	AC	ACRMU
Baker	T-1	7			11	2	3	11	5	31%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-2	7			6	1 2	3	6	5.5	48%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-3	7			11	2	4.5	11	6.5	37%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-4	7	f,g	18	16	4		34	4	11%	12.5	D	Taxiway	AC	ACRMU
Baker	T-5	7	g	18	10	4		28	4	13%	12.5	D	Taxiway	AC	ACRMU
Benchmark	A-1B	0			6	3		6	3	33%	45	Н	Apron	AC	ACPS
Benchmark	R-1	0			5	2		5	2	29%	45	G	Runway	AC	ACPS
Benchmark	T-1	0			6	3		6	3	33%	45	Н	Taxiway	AC	ACPS
Big Sandy	A-2	6			13	3		13	3	19%	12.5	D	Apron	AC	ACAM
Big Sandy	R-11	6			13	3		13	3	19%	12.5	D	Runway	AC	ACRMU
Big Sandy	T-12	6	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Big Timber	A-1	5		6	4	2.5	1	10	3	23%	12.5	D	Apron	AC	ACAM
Big Timber	R-1	5		6	9.5	2.5	1	15.5	3	16%	12.5	D	Runway	AC	ACRML
Big Timber	R-2	5			4	2.5	1	4	3	43%	12.5	Е	Runway	AC	ACRML
Big Timber	T-2	5			4	2	2	4	3	43%	12.5	Е	Taxiway	AC	ACRML
Big Timber	T-4	5		30	6	4		36	4	10%	12.5	D	Taxiway	AC	ACRML
Big Timber	T-5	5		30	6	4		36	4	10%	12.5	D	Taxiway	AC	ACRML
Broadus	A-1	5		6	4	3.5		10	3.5	26%	12.5	D	Apron	AC	ACAM
Broadus	R-1	5		6	4	3.5		10	3.5	26%	12.5	D	Runway	AC	ACRML
Broadus	T-1	5		6	4	3.5		10	3.5	26%	13.5	D	Taxiway	AC	ACRML
Chester	A-11	5		6	12	3		18	3	14%	12.5	D	Apron	AC	ACAM
Chester	T-13	5		6	12	3	2	18	5	22%	12.5	D	Taxiway	AAC	ACRML
Chester	R-3	5		6	13	3	2	19	5	21%	12.5	D	Runway	AAC	ACRML

 TABLE 2.4

 SECTION PROPERTIES AND FAMILY ASSIGNMENTS

 - Sub %

Prc
9.
ect
A
Įd
pr
Ò.
â
ch

Branch Name		Approx. Annual	Geo- Grid/	Sub- base	Base Course	Surface Course	Overlay	Gravel	Asphalt	% Asphalt	Pavement	Section	Branch	Surface	
(Airport City)	Section	Operations	Fabric	(Inches)		(Inches)	(Inches)	Depth	Depth	Depth	Strength	Category	Use	Туре	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Chinook	A-1B	8			10	3	2	10	5	33%	12.5	Е	Apron	AAC	ACAM
Chinook	R-1	8			10	3	2	10	5	33%	12.5	Е	Runway	AAC	ACRMU
Chinook	T-1	8			10	3	2	10	5	33%	12.5	Е	Taxiway	AAC	ACRMU
Choteau	A-1	3		6	12	3		18	3	14%	24	D	Apron	AC	ACAM
Choteau	R-11	3		6	13	2		19	2	10%	24	D	Runway	AC	ACRML
Choteau	R-2	3	f	7.5	6.5	3		14	3	18%	24	D	Runway	AC	ACRML
Choteau	T-1	3			12	3		12	3	20%	24	D	Taxiway	AC	ACRML
Choteau	T-2	3	f	7.5	6.5	3		14	3	18%	24	D	Taxiway	AC	ACRML
Circle	A-2	4		10	4	2		14	2	13%	16	D	Apron	AC	ACAM
Circle	R-11	4		8	8	3		16	3	16%	30	D	Runway	AC	ACRML
Circle	T-1	4		6	13	3		19	3	14%	21	D	Taxiway	AC	ACRML
Colstrip	A-1	3			9	3	3.5	9	6.5	42%	12.5	Е	Apron	AAC	ACAM
Colstrip	R-1	3			9	3	3.5	9	6.5	42%	12.5	Е	Runway	AAC	ACRML
Colstrip	T-1	3			9	3	3.5	9	6.5	42%	12.5	Е	Taxiway	AAC	ACRML
Columbus	A-1	9	f		13	3		13	3	19%	12.5	D	Apron	AC	ACAM
Columbus	R-1	9	f		13	3		13	3	19%	12.5	D	Runway	AC	ACRMU
Columbus	T-1	9	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Columbus	T-3	9	f		13	3		13	3	19%	13.5	D	Taxiway	AC	ACRMU
Conrad	A-1	4			10	2	2.5	10	4.5	31%	12.5	Е	Apron	AAC	ACAM
Conrad	R-3	4	f	8	3	3.5		11	3.5	24%	12.5	D	Runway	AC	ACRML
Conrad	T-4	4			10	2	2.5	10	4.5	31%	12.5	Е	Taxiway	AAC	ACRML
Culbertson	A-1	5			8	1	3	8	3.5	30%	12.5	Е	Apron	AC	ACAM
Culbertson	R-1	5			8	1	3	8	3.5	30%	12.5	Е	Runway	AC	ACRML
Culbertson	R-2	5			8	1 3		8	3.5	30%	12.5	Е	Runway	AC	ACRML
Culbertson	T-1	5			8	1	3	8	3.5	30%	12.5	Е	Taxiway	AC	ACRML
Cut Bank	R-21	8	f	8	12	3		20	3	13%	27.5	D	Runway	AC	ACRMU
Cut Bank	T-4	8		6	3	3	1	9	3.5	28%	12.5	D	Taxiway	AC	ACRMU
Cut Bank	T-5	8	f		11	3		11	3	21%	12.5	D	Taxiway	AC	ACRMU
Deer Lodge	A-3	4			6	2.5	1.5	6	4	40%	30	Е	Apron	AAC	ACAM
Deer Lodge	A-5	4			4	4		4	4	50%	30	Е	Apron	AC	ACAM
Deer Lodge	R-3	4			6	2.5	2	6	4.5	43%	30	Е	Runway	AAC	ACRML
Deer Lodge	R-4	4			4	4		4	4	50%	30	Е	Runway	AC	ACRML
Deer Lodge	T-2	4			10	2.5		10	2.5	20%	12.5	D	Taxiway	AC	ACRML

Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth		Pavement Strength	Section Category	Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Dillon	A-3	11		10	4	1.5	1.5	14	3	18%	16	D	Apron	AAC	ACAM
Dillon	A-4	11	f	13	6	4		19	4	17%	33	G	Apron	AC	ACAH
Dillon	A-11	11			11.5	3		11.5	3	21%	22	D	Apron	AC	ACAM
Dillon	R-3	11			15	3		15	3	17%	30	D	Runway	AC	ACRMU
Dillon	R-4	11	f	24	15	3		39	3	7%	30	D	Runway	AC	ACRMU
Dillon	R-21	11			17	3		17	3	15%	30	D	Runway	AC	ACRMU
Dillon	T-3	11		7	4	3		11	3	21%	12.5	D	Taxiway	AC	ACRMU
Dillon	T-5	11			15	3		15	3	17%	30	D	Taxiway	AC	ACRMU
Ekalaka	A-1	3		11.5	2	1	3.5	13.5	4	23%	12.5	D	Apron	AC	ACAM
Ekalaka	R-1	3		11.5	2	1	3.5	13.5	4	23%	12.5	D	Runway	AC	ACRML
Ekalaka	R-11	3	g,f		12	4		12	4	25%	12.5	D	Runway	AC	ACRML
Ekalaka	T-1	3		11.5	2	1	3.5	13.5	4	23%	12.5	D	Taxiway	AC	ACRML
Ennis	A-2	12			8	3		8	3	27%	12.5	D	Apron	AC	ACAM
Ennis	R-11	12			7	3		7	3	30%	13.5	Е	Runway	AC	ACRMU
Ennis	T-1	12			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRMU
Ennis	T-2	12			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRMU
Eureka	A-1	2		6	4	3	3	10	6	38%	12.5	Е	Apron	AAC	ACAM
Eureka	R-1	2		6	4	3	3	10	6	38%	12.5	Е	Runway	AAC	ACRML
Eureka	T-1	2		6	4	3	3	10	6	38%	12.5	Е	Taxiway	AAC	ACRML
Eureka	Т-3	2			6	3	3	6	6	50%	12.5	Е	Taxiway	AAC	ACRML
Forsyth	A-1	8			4	3	2.5	4	5.5	58%	12.5	Е	Apron	AAC	ACAM
Forsyth	R-1	8			7	3		7	3	30%	12.5	Е	Runway	AC	ACRMU
Forsyth	T-1	8			7	3		7	3	30%	12.5	Е	Taxiway	AC	ACRMU
Forsyth	T-2	8			3	6	2.5	3	8.5	74%	12.5	F	Taxiway	AAC	ACRMU
Fort Benton	A-1	5	f	6	6	3	2	12	5	29%	16	D	Apron	AAC	ACAM
Fort Benton	R-1	5	f	6	6	3	2	12	5	29%	16	D	Runway	AAC	ACRML
Fort Benton	T-1	5	f	6	6	3	2	12	5	29%	16	D	Taxiway	AAC	ACRML
Fort Benton	T-2	5	f	6	6	3		12	3	20%	12.5	D	Taxiway	AC	ACRML
Fort Benton	T-13	5			11	2		11	2	15%	9	А	Taxiway	AC	ACPL
Gardiner	R-1	8				4		0	4	100%	4	С	Runway	AC	ACPL
Gardiner	T-1	8				4		0	4	100%	4	С	Taxiway	AC	ACPL

Ρ
roje
ect I
App
roc
ıch

SECTION FROMENTES AND FAMILET ASSIGNMENTS																	
Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base C (Incl		Surface Course (Inches)	Overla (Inches	•		Asphalt Depth	-	Pavement Strength	Section Category	Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg)	(AC)	(BST) (AC) (PCC)	(BST) (AC)	(PFC)				(1000 lbs.)				
Glasgow	A-7	8	f	25	5		3			30	3	9%	12.5	D	Apron	AC	ACAM
Glasgow	R-13	8		8		5	4			8	9	53%	25	Е	Runway	AC	ACRMU
Glasgow	R-14	8	g,f	11	4		3			15	3	17%	25	D	Runway	AC	ACRMU
Glasgow	R-15	8	-	11	8		4			19	4	17%	55	G	Runway	AC	ACRH
Glasgow	T-1	8		8		5	4	2	2.6	8	12.3	61%	75	Н	Taxiway	AAC	ACRH
Glasgow	T-3	8		8		5	4	2	2.6	8	12.3	61%	75	Н	Taxiway	AAC	ACRH
Glasgow	T-5	8		6	6		4	5		12	9	43%	75	Н	Taxiway	AAC	ACRH
Glendive	A-1	6		6	6		4	2		12	6	33%	44	Н	Apron	AAC	ACAH
Glendive	A-2	6					5	2.5		0	7.5	100%	12.5	F	Apron	AAC	ACAM
Glendive	R-1	6		6	6		4	2		12	6	33%	53	Н	Runway	AAC	ACRH
Glendive	R-2	6		5	5		3	2		10	5	33%	38	Н	Runway	AAC	ACRH
Glendive	R-3	6			6		3	2		6	5	45%	12.5	Е	Runway	AAC	ACRMU
Glendive	T-1	6		6	6		4			12	4	25%	44	G	Taxiway	AC	ACRH
Glendive	T-2	6					5	2.5		0	7.5	100%	12.5	F	Taxiway	AAC	ACRMU
Glendive	T-5	6	f	6	12		5			18	5	22%	30	D	Taxiway	AC	ACRMU
Glendive	T-7	6		6	10		4			16	4	20%	30	D	Taxiway	AC	ACRMU
Hamilton	A-2	25			9		1			9	0.5	5%	17	А	Apron	ST	STPA
Hamilton	R-1A	25		4	7		1	1	1.5	11	1.75	14%	17	D	Runway	AC	ACRMU
Hamilton	R-2	25	f	40	4		2		1	44	2.5	5%	17	D	Runway	AC	ACRMU
Hamilton	T-5	25		12	8		4			20	4	17%	17	D	Taxiway	AC	ACRMU
Hardin	A-1	0		36	5		3			41	3	7%	18.5	D	Apron	AC	ACAM
Hardin	R-1	0		36	5		3			41	3	7%	18.5	D	Runway	AC	ACRMI
Hardin	T-1	0		36	5		3			41	3	7%	18.5	D	Taxiway	AC	ACRMI
Harlem	A-11	4		10.5	6		3			16.5	3	15%	12.5	D	Apron	AC	ACAM
Harlem	R-11	4		10.5	6		3			16.5	3	15%	12.5	D	Runway	AC	ACRMI
Harlem	T-11	4		10.5	6		3			16.5	3	15%	12.5	D	Taxiway	AC	ACRMI
Harlowton	A-21	2			9		3			9	3	25%	12.5	D	Apron	AC	ACAM
Harlowton	R-21	2			12.5		3			12.5	3	19%	12.5	D	Runway	AC	ACRMI
Harlowton	T-21	2			9		3			9	3	25%	12.5	D	Taxiway	AC	ACRMI
Havre	A-5	9		16	3		4		1	19	4.5	19%	45	G	Apron	AC	ACAH
Havre	R-15	9			7		4			7	4	36%	30	Е	Runway	AC	ACRMU
Havre	R-22	9		30	6	2	2		1	36	4.5	11%	12.5	D	Runway	AC	ACRMU
Havre	T-4	9		11.5	6		3		1	17.5	3.5	17%	30	D	Taxiway	AC	ACRMU

Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth		Pavement Strength	Section Category	Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Jordan	A-11	2	g, f	11	4	3		15	3	17%	12.5	D	Apron	AC	ACAM
Jordan	R-1	2	-	7	5	1.5	3.5	12	4.25	26%	12.5	D	Runway	AC	ACRML
Jordan	T-1	2		7	5	1.5	3.5	12	4.25	26%	12.5	D	Taxiway	AC	ACRML
Laurel	A-3	40	f		12	4		12	4	25%	12.5	D	Apron	AC	ACAM
Laurel	R-4	40	f		12	4		12	4	25%	12.5	D	Runway	AC	ACRMU
Laurel	T-8	40	f		12	4		12	4	25%	12.5	D	Taxiway	AC	ACRMU
Laurel	T-9	40	f		12	4		12	4	25%	12.5	D	Taxiway	AC	ACRMU
Lewistown	A-2	15			6	2	1	6	2.5	29%	8	А	Apron	AC	ACPL
Lewistown	R-23	15			11	3		11	3	21%	12.5	D	Runway	AC	ACRMU
Lewistown	R-32	15			10.5	5	5.5	10.5	10.5	50%	40	Н	Runway	AAC	ACRH
Lewistown	R-33	15			10	2	2.5	10	4.5	31%	40	Н	Runway	AAC	ACRH
Lewistown	R-34	15			10 7	1	2.5	10	10.5	51%	40	Н	Runway	AAC	ACRH
Lewistown	T-1	15			6.25	5.8	3	6.25	7.25	54%	45	Н	Taxiway	AAC	ACRH
Lewistown	T-5	15			10	3	1	10	3.5	26%	40	G	Taxiway	AC	ACRH
Lewistown	T-7	15		6	4	3		10	3	23%	12.5	D	Taxiway	AC	ACRMU
Lewistown	T-8	15		6	4	3		10	3	23%	12.5	D	Taxiway	AC	ACRMU
Lewistown	T-11	15	f		9	3		9	3	25%	18	D	Taxiway	AC	ACRMU
Libby	A-2	5		6	2	4	2	8	6	43%	23	Е	Apron	AAC	ACAM
Libby	A-3	5		6	6	3	2	12	5	29%	60	G	Apron	AAC	ACAH
Libby	R-1	5		8	2	2	1.3	8	4.625	37%	23	Е	Runway	AAC	ACRML
Libby	R-2	5		6	2	3.6	1.3	8	4.225	35%	23	Е	Runway	AAC	ACRML
Libby	T-2	5		6	6	3		12	3	20%	60	G	Taxiway	AC	ACRH
Libby	T-5	5	f		8	4		8	4	33%	23	Е	Taxiway	AC	ACRML
Lincoln	A-11	4		29	6.75	3		35.75	3	8%	12.5	D	Apron	AC	ACAM
Lincoln	R-11	4		29	6.75	3		35.75	3	8%	12.5	D	Runway	AC	ACRML
Lincoln	T-11	4		29	6.75	3		35.75	3	8%	12.5	D	Taxiway	AC	ACRML
Livingston	A-11	15			6	4		6	4	40%	38	Н	Apron	AC	ACAH
Livingston	R-11	15			6	4		6	4	40%	39	Н	Runway	AC	ACRH
Livingston	T-5	15		8	6	3	1	14	4	22%	40	G	Taxiway	AAC	ACRH
Malta	A-1	6	g, f	14	2	2	4	14	8	36%	12.5	Е	Apron	AAC	ACAM
Malta	R-1	6	g, f	14		4	4	14	8	36%	12.5	Е	Runway	AAC	ACRMU
Malta	T-1	6	g, f	14		4	4	14	8	36%	12.5	Е	Taxiway	AAC	ACRMU
Miles City	R-12	11	0		19 9	4		19	13	41%	38	Н	Runway	AC	ACRH
Miles City	T-2A	11			6	2.5	1 3	6	6	50%	20	Е	Taxiway	AAC	ACRMU
Miles City	T-3	11	f	11	4	3		15	3	17%	38	G	Taxiway	AC	ACRH
Miles City	T-6	11	f		8	2.5		8	2.5	24%	24	D	Taxiway	AC	ACRMU

Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth		Pavement Strength	Section Category	Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Plains	A-1	4	f	8	3	3		11	3	21%	12.5	D	Apron	AC	ACAM
Plains	R-1	4	f	8	3	3		11	3	21%	12.5	D	Runway	AC	ACRML
Plains	T-1	4	f	8	3	3		11	3	21%	12.5	D	Taxiway	AC	ACRML
Plentywood	A-11	11			8	3	3	8	6	43%	12.5	Е	Apron	AAC	ACAM
Plentywood	R-11	11	f		9	4		9	4	31%	12.5	Е	Runway	AC	ACRMU
Plentywood	T-11	11	f		9	4		9	4	31%	12.5	Е	Taxiway	AC	ACRMU
Polson	A-11	10			12	3		12	3	20%	12.5	D	Apron	AC	ACAM
Polson	R-11	10	f		13	3		13	3	19%	12.5	D	Runway	AC	ACRMU
Polson	T-11	10	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Polson	T-12	10	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Poplar	A-1	11	f	9	6	3		15	3	17%	4	А	Apron	AC	ACPL
Poplar	R-1	11	f	9	6	3		15	3	17%	4	А	Runway	AC	ACPL
Poplar	T-1	11	f	9	6	3		15	3	17%	4	А	Taxiway	AC	ACPL
Ronan	A-11	10	f	8.5	6	2.5		14.5	2.5	15%	20	D	Apron	AC	ACAM
Ronan	A-12	10	f	8.5	6	2.5		14.5	2.5	15%	20	D	Apron	AC	ACAM
Ronan	R-11	10	f	8.5	6	2.5		14.5	2.5	15%	20	D	Runway	AC	ACRMU
Ronan	T-11	10	f	8.5	6	2.5		14.5	2.5	15%	20	D	Taxiway	AC	ACRMU
Roundup	A-1	5			10	1	2	10	2.5	20%	14	D	Apron	AC	ACAM
Roundup	R-1	5			10	2	2	10	4	29%	22	D	Runway	AAC	ACRML
Roundup	T-1	5			10	1	2	10	2.5	20%	14	D	Taxiway	AC	ACRML
Roundup	T-4	5		12	6	3		18	3	14%	12.5	D	Taxiway	AC	ACRML
Scobey	A-11	4		8	6	4		14	4	22%	12.5	D	Apron	AC	ACAM
Scobey	R-11	4		6	6	4		12	4	25%	12.5	D	Runway	AC	ACRML
Scobey	R-12	4			14	4		14	4	22%	12.5	D	Runway	AC	ACRML
Scobey	T-11	4		6	6	4		12	4	25%	12.5	D	Taxiway	AC	ACRML
Shelby	A-21	8		18	6	3		24	3	11%	12.5	D	Apron	AC	ACAM
Shelby	R-21	8		18	14	3		32	3	9%	12.5	D	Runway	AC	ACRMU
Shelby	R-22	8		18	14	3		32	3	9%	12.5	D	Runway	AC	ACRMU
Shelby	T-6	8		8	4	3	2	12	5	29%	12.5	D	Taxiway	AAC	ACRMU
Shelby	T-17	8		18	4	3		22	3	12%	12.5	D	Taxiway	AC	ACRMU
Shelby	T-21	8	f	18	6	3		24	3	11%	12.5	D	Taxiway	AC	ACRMU
Shelby	T-22	8	f	18	6	3		24	3	11%	12.5	D	Taxiway	AC	ACRMU

	SECTION I KOLEKTIES AND FAMIL														
Branch Name (Airport City)	Section	Approx. Annual Operations	Geo- Grid/ Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth		Pavement Strength	Section Category	Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Sidney	A-3A	13	f		10	4		10	4	29%	25	D	Apron	AC	ACAM
Sidney	A-11	13	f		8	8		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Sidney	A-13	13	f		10	4		10	4	29%	40	G	Apron	AC	ACAH
Sidney	R-11	13		6	3	2 4	4.5	9	9.5	51%	40	Н	Runway	AAC	ACRH
Sidney	R-12	13		6	6	2 4	4.5	12	9.5	44%	40	Н	Runway	AAC	ACRH
Sidney	T-4	13		16	6	3.5	3.5	22	7	24%	40	G	Taxiway	AAC	ACRH
Sidney	T-6	13	g	24	4	5		28	5	15%	40	G	Taxiway	AC	ACRH
Stanford	A-2	4	-		8	3		8	3	27%	12.5	D	Apron	AC	ACAM
Stanford	R-2	4			12	1	3	12	3.5	23%	12.5	D	Runway	AC	ACRML
Stanford	R-3	4			8	3		8	3	27%	12.5	D	Runway	AC	ACRML
Stanford	T-2	4			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRML
Stevensville	A-1	14			5.5	1.8	1	5.5	1.4	20%	12.5	D	Apron	ST	STPA
Stevensville	A-2	14			6	2		6	2	25%	12.5	D	Apron	AC	ACAM
Stevensville	R-1	14			5.5	1.8	1	5.5	1.4	20%	12.5	D	Runway	ST	STPA
Stevensville	T-3	14			6	2		6	2	25%	12.5	D	Taxiway	AC	ACRMU
Stevensville	T-5	14		8	4	3		12	3	20%	12.5	D	Taxiway	AC	ACRMU
Superior	A-11	4		9	6	3		15	3	17%	30	D	Apron	AC	ACAM
Superior	R-11	4		9	6	3		15	3	17%	30	D	Runway	AC	ACRML
Superior	T-11	4		9	6	3		15	3	17%	30	D	Taxiway	AC	ACRML
Terry	A-11	1			11.5	2.5		11.5	2.5	18%	12.5	D	Apron	AC	ACAM
Terry	R-11	1			11.5	2.5		11.5	2.5	18%	12.5	D	Runway	AC	ACRML
Terry	T-11	1			11.5	2.5		11.5	2.5	18%	12.5	D	Taxiway	AC	ACRML
Thompson Falls	A-2	7			4	2.5		4	2.5	38%	12.5	Е	Apron	AC	ACAM
Thompson Falls	R-1	7			6	1.5	2	6	2.75	31%	12.5	Е	Runway	AC	ACRMU
Thompson Falls	R-2	7			4	2.5		4	2.5	38%	12.5	Е	Runway	AC	ACRMU
Thompson Falls	T-4	7			4	2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Thompson Falls	T-5	7			4	2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Three Forks	A-1	12			4	2.5	2	4	4.5	53%	12.5	Е	Apron	AAC	ACAM
Three Forks	R-1	12			4	2.5	2	4	4.5	53%	12.5	Е	Runway	AAC	ACRMU
Three Forks	R-2	12			4	2.5	2	4	4.5	53%	12.5	Е	Runway	AAC	ACRMU
Three Forks	T-2	12			4	2.5	2	4	4.5	53%	12.5	Е	Taxiway	AAC	ACRMU
Three Forks	T-3	12			4	2.5	2	4	4.5	53%	12.5	Е	Taxiway	AAC	ACRMU
Three Forks	T-4	12			4	2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU

Branch Name (Airport City)	Section	Annual Operations	Grid/ Fabric	base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overlay (Inches)		Asphalt Depth	Asphalt Depth	Pavement Strength		Branch Use	Surface Type	Family
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC) (PFC)				(1000 lbs.)				
Townsend	A-1	5			4	3	2	4	5	56%	12.5	Е	Apron	AAC	ACAM
Townsend	R-1	5			4	3	2	4	5	56%	12.5	Е	Runway	AAC	ACRML
Townsend	T-1	5			4	3	2	4	5	56%	12.5	Е	Taxiway	AAC	ACRML
Turner	A-1	7	f	22	6	3		28	3	10%	12.5	D	Apron	AC	ACAM
Turner	R-1	7	f	22	6	3		28	3	10%	12.5	D	Runway	AC	ACRMU
Turner	T-3	7	f	22	6	3		28	3	10%	12.5	D	Taxiway	AC	ACRMU
Twin Bridges	A-11	3		11	6	4		17	4	19%	60	G	Apron	AC	ACAH
Twin Bridges	R-11	3		11	6	4		17	4	19%	60	G	Runway	AC	ACRH
Twin Bridges	T-11	3		11	6	4		17	4	19%	60	G	Taxiway	AC	ACRH
West Yellowstone	A-4	11			6	1	2	6	1.5	20%	30	D	Apron	AC	ACPS
West Yellowstone	R-1	11			7	2.5	3	0	12.5	100%	105	Ι	Runway	AAC	ACPS
West Yellowstone	R-2	11			8	3	3	0	14	100%	90	Ι	Runway	AAC	ACPS
	T-1	11			8	3		0	11	100%	90	Ι	Taxiway	AC	ACPS
White Sulphur Springs White Sulphur	A-11	5			10	3.5		10	3.5	26%	16.5	D	Apron	AC	ACAM
1	R-11	5			10	3.5		10	3.5	26%	16.5	D	Runway	AC	ACRML
Springs White Sulphur	R-12	5			5	4	3	5	7	58%	16.5		Runway		ACRML
Springs	T-12	5			5	2		5	2	29%	16.5	D	Taxiway	AC	ACRML
	A-5	6			15	3	1.5	15	4.5	23%	18	D	Apron	AAC	ACAM
	R-11	6		9	14	4		23	4	15%	38	G	Runway	AC	ACRH
Wolf Point	T-4	6			15	3	1.5	15	4.5	23%	18	D	Taxiway	AAC	ACRMU

TABLE 2.4 (contd.) SECTION PROPERTIES AND FAMILY ASSIGNMENTS Approx. Geo- Sub-

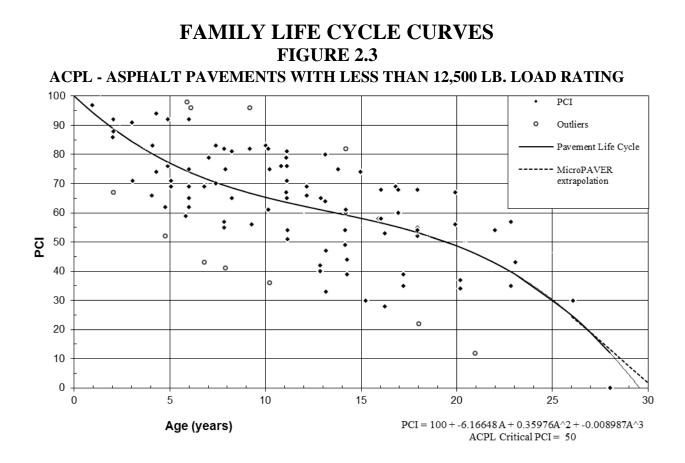
%

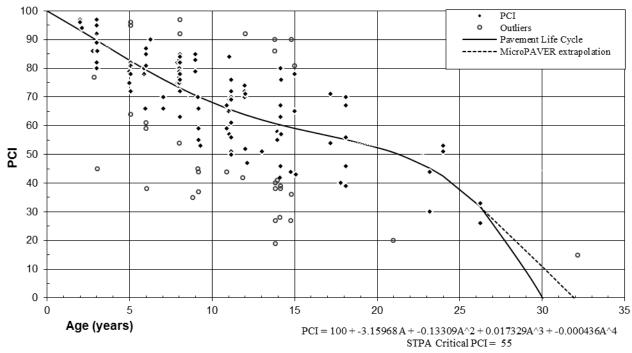
NOTES:

Page 2-19

Italic font indicates the airport was neither inspected nor mapped for this report, as such the included information is suspect. If construction has occurred, it will not be reflected in this report. Section Properties and families are assumed from the most current pre-2015 pavements.

(Agg) = Aggregate

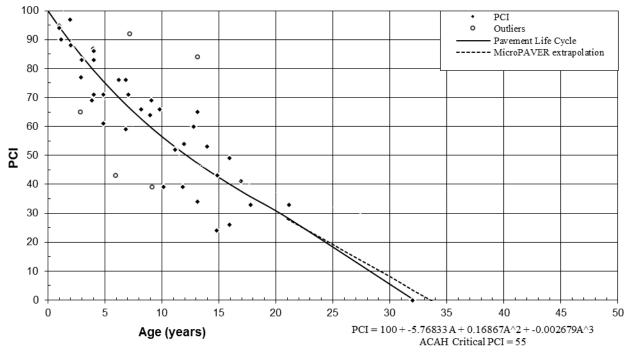

(AC) = Asphalt Cement Concrete


(BST) = Bituminous Surface Treatment (PCC) = Portland Cement Concrete

(PCF) = Porous Friction Course

Figures 2.3 through 2.11 illustrate the family analysis curves for the nine families defined in this project. These curves are based on actual data from pavement condition surveys spanning 1988-2015. In some cases, pavements were filtered out of the curve analyses when they fit poorly with the other data within the family, when there was a known atypical repair to specific pavements, or simply using good engineering judgement about the possible quality versus pavement age.

Figures 2.3 through 2.11 show life cycle curves for each family, selected data points used to construct the curve, and non-contributing "outliers" not used in the curve fit. Note that PAVER uses the dashed linear projection rather than the curve for ages greater than sampled ages in the family. The lower right corner of each graph contains the family curve equation, as well as the "critical PCI" where the rate of deterioration increases markedly.



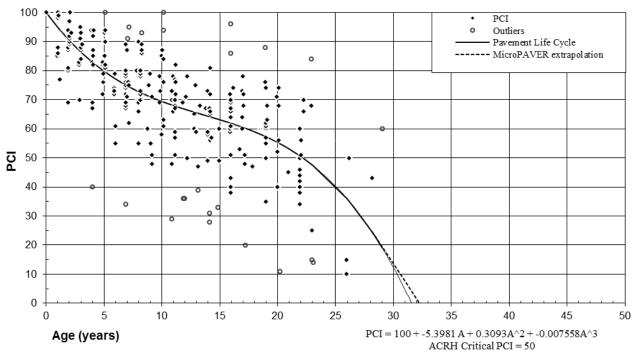
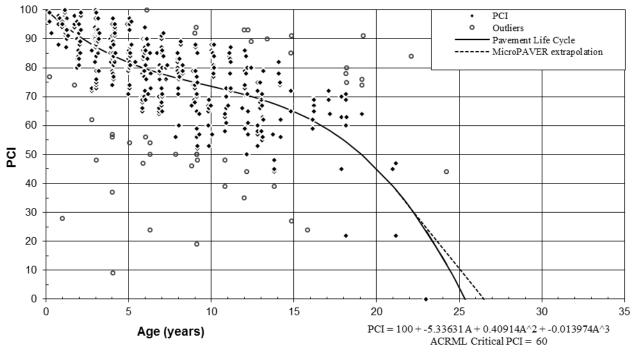


FIGURE 2.4 STPA - BITUMINOUS SURFACE TREATED PAVEMENTS OF ALL LOAD RATINGS

FIGURE 2.5

ACAH - ASPHALT APRONS WITH HIGHER THAN 30,000 LB. LOAD RATING



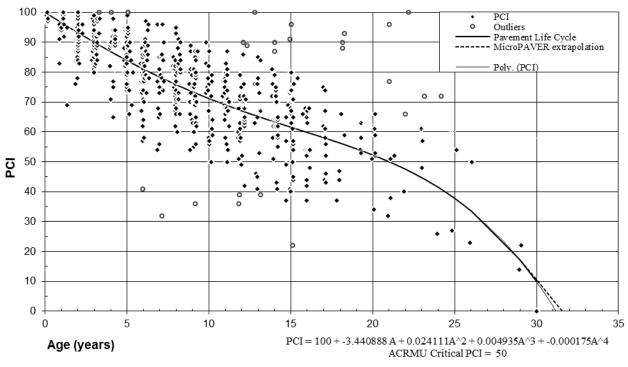
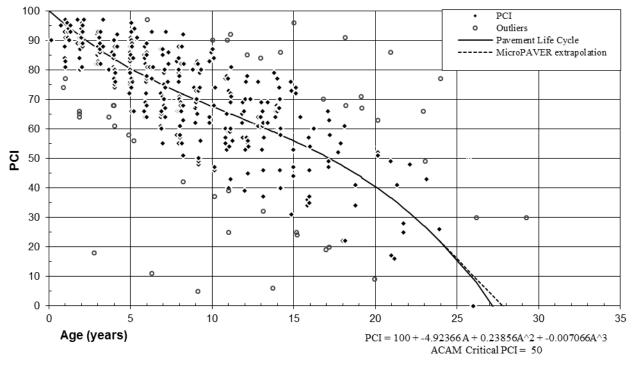


FIGURE 2.6 ACRH - ASPHALT RUNWAYS AND TAXIWAYS WITH HIGHER THAN 30,000 LB. LOAD RATING

ACRML - ASPHALT RWS AND TWS, LOAD RATING 12,500 TO 30,000 LB., 5000 OR FEWER OPS.



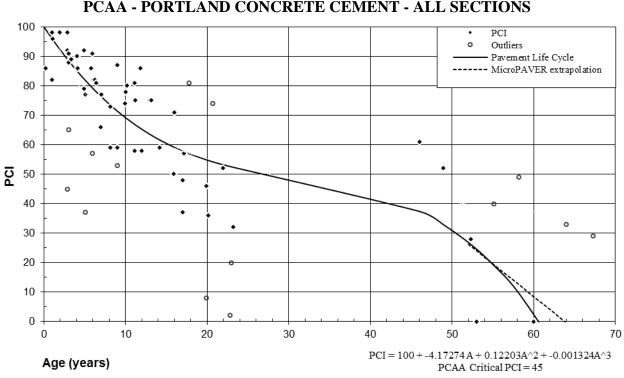


FIGURE 2.8 ACRMU -ASPHALT RWS AND TWS, LOAD RATING 12,500 TO 30,000 LB., OVER 5000 OPS.

FIGURE 2.9

FIGURE 2.10 PCAA - PORTLAND CONCRETE CEMENT - ALL SECTIONS

FIGURE 2.11 ACPS - ASPHALT PAVEMENTS WITH SEASONAL USAGE

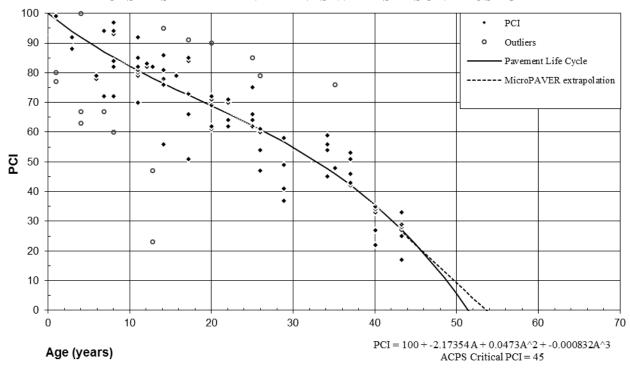
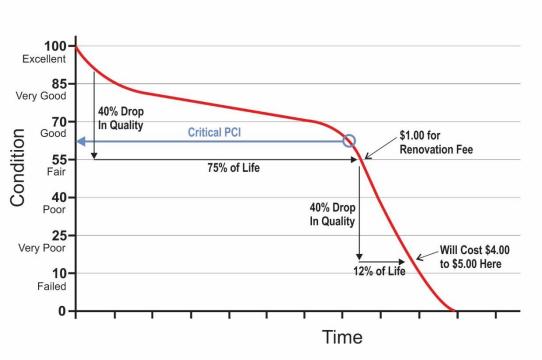



Figure 2.12 illustrates a theoretical pavement life cycle, and some very general observations about renovation costs throughout the pavement's life. The critical PCI is at the crest of the curve where continued maintenance begins to be less economical than reconstruction.

FIGURE 2.12 PAVEMENT LIFE CYCLE

CHAPTER 3 RESULTS AND RECOMMENDATIONS

CHAPTER 3 RESULTS AND RECOMMENDATIONS

3.1 FAMILY ANALYSIS CURVES

Pavement families for this analysis are slowly evolving from the consistent 1988-1997 family groups. The families are designed to group similar pavements based on material type, primary use, design strength, and annual operations within the context of the current pavement design and maintenance norms. The core of the original family groupings have been retained since they are providing increasingly stable and accurate predictors of Montana airport pavement behavior. With pavement maintenance norms changing, the database's oldest pavement's behavior is no longer an accurate predictor of future condition. So, inspection data from abandoned, demolished, and non-maintained sections are no longer included in the family curve determinations. These dropped inspections are no longer representative "typical" sections and there are sufficient inspections to provide statistical validity without these data points. The two original surface treatment families were combined into a single family in 2006, and remain so this year, since very few of these pavements remain. Likewise, pavements with design loads under 12,500 pounds are now rarely constructed, so the dwindling remnants of these "light" pavements have been grouped into a single family, regardless of their use. Comparison of the family curves from 1991 to the present provides some insight into the appropriateness of the family definition criteria, and the likely long-term usefulness of the curves. (See Figure A.1of the Appendix A)

2015 family ACPL (Asphalt Concrete, All Pavements, Low Strength) combined former families ACAL and ACRL, light duty asphalt aprons and runway/taxiways, respectively. FAA policies no longer encourage constructing asphalt pavements with design loads less than 12,500 pounds, so the remaining members of this shrinking family are upgraded to medium strength whenever reconstruction or maintenance is required. The family exhibits about 7 years of rapid aging followed by 10 years of slower decline. After approximately 17 years of acceptable performance, the family curve passes through a critical PCI of 50 and begins a rapidly accelerating decline in pavement quality. A good deal of scatter in ACPL data indicate variations in construction quality, maintenance, use, and climate. Improving maintenance practices are documented by a raised graph in the 5-15 year range. This family shows excellent stability in 2006, 2009, and 2015.

2015 family STPA (Surface Treatment, All Pavements, All Strengths) was adjusted slightly from previous years to reduce the very flat mid-life plateau that contributed to prediction volatility. The bulk of the data for this family comes from pavements 15-years old or less, with only two airports continuing to contribute data for pavement over 20-years of age. These relatively low-strength pavements exhibit a fairly uniform rate of deterioration through their first 10 years, followed by another 10 years of more rapid deterioration, projecting approximately 20-years of usable life before rapidly declining to an unserviceable condition. Double- and triple-shot surfaces continue to be replaced by dense-grade mixes, decreasing the pool of family members. The critical PCI remains at "55".

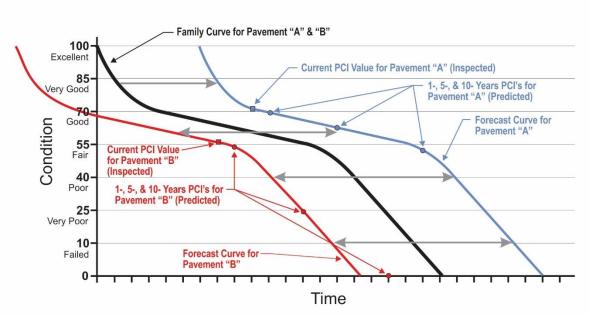
2015 family ACAH (Asphalt Concrete, Aprons, High Strength) made the largest change of any family in 2015 with the removal of all Benchmark and Yellowstone Airport pavements. The

formerly long predicted life (30 years of above-critical service) is just not supported by the aging at any of the remaining airport pavements. Other pavements in this family have finally reached 15-20 years of age, and deteriorated to well below critical, similar to other AC families. Family ACAH predicts about 12 years of good, usable pavement life before reaching critical PCI of 55. Beyond the critical PCI, this family curve actually shows a slowing of aging, as if maintenance intensifies to stretch the aprons' life until piggy-backing onto a runway replacement project. Accuracy of the end of life predictions for this family will benefit greatly from the next couple of inspection cycles, since the remaining data is a bit sparse. ACAH predicts poor, but serviceable use out to about 25 years.

2015 family ACRH (Asphalt Concrete, Runways/Taxiways, High Strength) also makes a significant departure from past predictions with the removal of Benchmark and Yellowstone data. The first 15 years of prediction has been extremely consistent since 1994, in large part due to the large number of sections in the family, but the projected service life decreased by about 15 years. ACRH pavements can expect about 22 years above their critical PCI of 50, before beginning rapid deterioration.

2015 family ACRML (Asphalt Concrete, Runways/Taxiways, Medium Strength, Light Use) show better than average performance over the first 10 years of life, the results of preventative maintenance programs in common application across the State. Most of the pavements in this family have been crack sealed and fog sealed, or overlaid since the previous inspection. This is one of the largest sets in the database and it has minimal scatter. ACRML has a very slow initial aging rate, plus more than typical time in the over-70 PCI range. These pavements can expect about 17-years of useable life above their critical PCI of 60.

2015 family ACRMU (Asphalt Concrete, Runways/Taxiways, Medium Strength, Busy Use) was revised in 2015 to a simpler, less "bumpy" curve to provide more regular predictions. There remains periodic increases in data scatter indicative of periodic application of preventative maintenance common at Montana's most-used airports. This is a data-rich family that should not show much variation in the first 15 years over future inspection cycles. ACRMU pavements, as a group, are the busiest and best maintained pavements in the GA airport system. Changes in maintenance strategies and funding resulted in nearly every ACRMU pavement that was inspected showing signs of recent preventative maintenance. This maintenance appears to be producing a consistently better quality pavement, in addition to significantly extending the pavements' usable life. This family projects about 22 years of good service before passing the critical PCI of 50 and beginning rapid aging.


2015 family ACAM (Asphalt Concrete, Aprons, Medium Strength) has good, high-density data for 20-years of pavement behavior. This data has consistently shown a near-linear decline in quality with age, but the 2015 family accentuates the mid-life "plateau" separating more rapid aging. A linear decline in quality typically indicates heavy wear and hard use. The data in this family exhibits increasing scatter with age. An increasing dispersion of data points with age suggests that pavements within these families have differences in construction quality, maintenance practices between airports, or varied wear and traffic loads. The critical PCI remains at 50, with a predicted 17 years of above-critical service.

2015 family PCAA (Portland Cement, Aprons, All Strengths) was adjusted from previous years to have less of a mid-life plateau that results in volatile projections. This family doesn't have many sections, and only one over 25-years of age. Engineering judgement would indicate a PCAA life span for concrete regularly exposed to its design loads to be about 40 years. PCAA predicts 40 years of usable life above the critical PCI of 45, then rapid deterioration.

2015 family ACPS (Asphalt Concrete, All Pavements, Seasonal) collected pavements primarily from families ACAH and ACRH that had significantly longer pavement life than other elements of those families. The "anomalous" data was from Benchmark and Yellowstone Airports, which alone among the Montana airports, see only seasonal use. These two airports spend much of the winter season insulated under snow cover, and are potentially spared some of the freeze-thaw cycling that other Montana airport pavements are exposed to, resulting in a longer expected life. In early development of Montana airport families, these two airports did not provide enough points for a well-defined family. Now they have enough points to be reasonably robust, and stand alone as a family. ACPS predicts about 35 years of usable life above the critical PCI of 45.

3.2 PCI PREDICTIONS

Pavement Condition Index values were predicted for one, five, and ten years into the future for all pavements in the database, using the previously discussed pavement families: ACPL, ACAM, ACRML, ACRMU, ACAH, ACRH, STPA, PCAA, and ACPS. The PAVER software predicts PCI's by taking the last inspected PCI value, finding the corresponding PCI value on the family curve for that pavement, and assuming the particular pavement ages in the same way the family curve declines. Graphically, the family curve is moved *horizontally* until it lies on top of the last inspected PCI-verses-age point, then the family curve is followed forward.

FIGURE3.1 PAVER PCI PREDICTION PROCESS

Table 3.1 shows inspected PCI values for all pavement sections included in the Montana airport pavement database. It also includes predicted PCI values for the years 2016, 2020, and 2025, based on the last inspected PCI-verses-age for each airport and the 2015 family curves. PCI's calculated from inspections are separated from projected estimates by a "critical PCI" unique to the pavement family. Pavements above their critical PCI can be economically maintained, while those "below critical" have begun rapid decay and are typically reconstructed. The "critical PCI" is the pavement condition rating (PCI value) shortly before the family curve predicts a dramatic decrease in pavement quality.

Older PCI values for a pavement section are replaced with "XX" whenever the pavement is demolished and reconstructed. 2015 PCI inspections were not conducted on a number of airports that were recently reconstructed or rehabilitated, nor were inspections completed on a few airports with an extended period of maintenance inactivity. Airports not inspected in 2015 are shown in italics - please realize that predictions for these airports may not reflect their current conditions.

		a			OF I							D		DCI
	G	Section	Constr.	Family	2000		urveye			2015	Critical	-	licted	
Airport City	Section	Area	Year	Group	2000	2003	2006	2009	2012	2015	PCI	2016	2020	2025
(Branch Name)	<u> </u>	(sq. feet)			-						= 0	10		-
Anaconda	A-1	49,140	1992	ACAM		81	77	58	64	43	50	40	21	0
Anaconda	A-2	84,000	1993	ACAM		74	64	61	41	48	50	45	29	0
Anaconda	R-1	450,000	2009	ACRML		XX	XX	99	90 97	90	60	87	78 75	71
Anaconda	R-2	271,200	2011	ACRML		XX	XX	XX	85	84	60 ()	82	75	67
Anaconda	T-1	108,800	2009	ACRML		XX	XX	96	83	90	60 ()	87	78	71
Anaconda	T-6	35,840	2010	ACRML			XX	XX	95	80	60	78	73	63
Baker	A-2A	120,000	1992	ACAM	83	77	79 62	70	72	66	50 50	64	55	38
Baker Baker	A-5 R-1	40,000	1997	ACAM ACRMU	88 XX	86 XX	62 XX	66 XX	66 100	61 94	50 50	59 91	48 79	28 68
Baker	R-1 R-2	367,500 75,000	2012 2012	ACRMU	ΛΛ	ΛΛ	ΛΛ	ΛΛ	100	94 99	50 50	91 96	84	71
Baker	к-2 Т-1	33,750	2012	ACRMU	XX	88	74	69	75	99 72	50 50	90 70	64 63	53
Baker	T-1 T-2	137,200	2001	ACRMU	лл XX	00 85	74 75	73	73	72 75	50 50	70 74	66	55 57
Baker	T-2 T-3	53,620	2001	ACRMU	лл XX	83 94	75 76	75 79	75 85	75 75	50 50	74	65	56
Baker	T-3 T-4	45,415	2001 1997	ACRMU	лл 88	94 87	78 79	79 75	83 72	73 66	50 50	73 64	63 57	30 46
Baker	T-4 T-5	45,850	2012	ACRMU	00	07	19	15	100	97	50 50	94	82	70
Benchmark	A-1B	45,000	1966	ACRNIU	45	42	22	17	100	91	45	0	0	0
Benchmark	R-1	465,000	1900 1966	ACPS	4 <i>5</i> 59	42 51	35	29			45	12	1	0
Benchmark	T-1	13,500	1966	ACPS	56	42	34	33			45	16	5	0
Big Sandy	A-2	31,488	2010	ACAM	50	72	54	55	89		50	76	67	55
Big Sandy	R-11	214,200	2010	ACRMU					100		50 50	87	76	65
Big Sandy	T-12	46,261	2010	ACRMU					100		50 50	97	84	71
Big Timber	A-1	40,000	1996	ACAM	90	87	86	61	78	71	50	69	60	46
Big Timber	R-1	348,750	1996	ACRML	91	87	78	67	58	76	60	75	69	55
Big Timber	R-2	47,625	1996	ACRML	95	90	86	71	79	74	60	73	66	48
Big Timber	T-2	39,600	1996	ACRML	83	73	67	55	68	64	60	62	44	8
Big Timber	T-4	85,365	2003	ACRML			93	83	76	93	60	90	79	72
Big Timber	T-5	35,020	2003	ACRML			89	76	73	84	60	82	75	67
Broadus	A-1	99,855	2005	ACAM				86	95	84	50	81	71	59
Broadus	R-1	330,000	2005	ACRML				85	92	85	60	83	76	68
Broadus	T-1	45,500	2005	ACRML				89	94	84	60	82	75	67
Chester	A-11	42,706	2010	ACAM					100	90	50	87	75	63
Chester	T-13	17,600	1997	ACRML					95	86	60	84	76	69
Chester	R-3	345,000	1997	ACRML	91	81	79	65	87	85	60	83	76	68
Chinook	A-1B	39,000	2006	ACAM				82	86	73	50	71	62	49
Chinook	R-1	300,000	2006	ACRMU	XX	XX		87	85	80	50	78	69	60
Chinook	T-1	103,075	2006	ACRMU	XX	XX		92	89	87	50	85	74	64
Choteau	A-1	46,336	2001	ACAM		91	88	82	83	70	50	68	59	45
Choteau	R-11	198,000	2001	ACRML		92	85	78	76	75	60	74	68	52
Choteau	R-2	375,000	2001	ACRML		83	81	78	78	75	60	74	68	52
Choteau	T-1	38,760	2001	ACRML		81	84	81	76	75	60	74	68	52
Choteau	T-2	35,560	2001	ACRML		89	87	79	78	74	60	73	66	48
Circle	A-2	34,860	2007	ACAM	XX	XX		66	68	68	50	66	57	42
Circle	R-11	307,500	2007	ACRML				90	88	83	60	81	74	66
Circle	T-1	2,900	2007	ACRML	XX	XX		84	78	77	60	76	70	57
Colstrip	A-1	66,000	2008	ACAM	XX	XX	XX	90	91	74	50	72	63	50
Colstrip	R-1	382,500	2008	ACRML	XX	XX	XX	97	92	92	60	89	79	71
Colstrip	T-1	27,300	2008	ACRML	XX	XX	XX	93	94	84	60	82	75	67
Columbus	A-1	77,012	1998	ACAM		79	80	59	68	49	50	46	30	1
Columbus	R-1	285,000	1998	ACRMU		85	81	67	72	43	50	40	21	0
Columbus	T-1	76,575	1998	ACRMU		92	84	57	77	46	50	44	27	0
Columbus	T-3	45,275	2001	ACRMU		88	83	60	75	43	50	40	21	0
Conrad	A-1	95,000	2002	ACAM		77	76	76	75	57	50	55	43	20
Conrad	R-3	345,000	2002	ACRML		95	76	76	72	62	60 ()	60	40	4
Conrad	T-4	23,040	2002	ACRML		86	88	80	62	62	60	60	40	4

TABLE 3.1SUMMARY OF PCI RATINGS

Airport City (Branch Name) Section (sq. feet) Area (sq. feet) Year Group 2000 2005 2009 2015 PCI 2016 2020 2025 Culbertson A-1 47,000 2009 ACAM XX XX XX 96 89 50 86 74 62 Culbertson R-1 180,000 2009 ACRML XX XX XX 99 86 60 84 76 69 Culbertson R-2 48,000 2009 ACRML XX XX XX 98 90 60 87 78 71 Culbertson T-1 25,000 2009 ACRMU XX XX 93 93 83 50 60 83 76 68 Cut Bank T-4 156,800 1991 ACRMU 84 68 59 57 72 50 70 63 54 Cut Bank T-5 104,013				SUM		OF P	CI F	KAT]	ING	5					
tranch Name) Culbertson R-1 47,000 2009 ACAM XX XX XX V2 99 86 60 84 70 62 Culbertson R-2 48,000 2009 ACRML XX XX XX 93 83 50 81 71 64 Culbertson T-1 25,000 2009 ACRML XX XX XX 93 83 50 81 71 61 Culbartson T-4 156,000 1991 ACRML 180 72 73 65 50 65 64 42 Deer Lodge A-3 53,101 1996 ACAM 88 82 60 83 73 63 Deer Lodge R-3 330,000 1997 ACRML 81 72 70 75 50 73 65 56			Section		Family			burveye	ed PCI	s		Critical	Prec	licted	PCIs
Culbertson A-1 47,000 2009 ACAM XX YX YX <th>Airport City</th> <th>Section</th> <th>Area</th> <th>Year</th> <th>Group</th> <th>2000</th> <th>2003</th> <th>2006</th> <th>2009</th> <th>2012</th> <th>2015</th> <th>PCI</th> <th>2016</th> <th>2020</th> <th>2025</th>	Airport City	Section	Area	Year	Group	2000	2003	2006	2009	2012	2015	PCI	2016	2020	2025
Cuberson R-1 180,000 209 ACRML XX XX XX XX VI 99 86 60 84 76 67 Cuberson T-1 25,000 2009 ACRML XX XX XX 91 83 50 60 83 76 6 Cut Bank T-4 437,850 2007 ACRML 100 -67 72 23 63 50 75 10 63 54 Cut Bank T-5 104,013 2000 ACRML 88 82 - 100 88 97 50 93 73 63 Deer Lodge A-3 330,000 1996 ACRML 81 74 50 65 88 75 78 73 63 Deer Lodge T-2 31,000 1997 ACRML 81 81 72 80 96 95 95 96 93 86 90 86 </th <th>(Branch Name)</th> <th></th> <th>(sq. feet)</th> <th></th>	(Branch Name)		(sq. feet)												
Calbertsom R-2 44.300 2009 ACRNL XX XX XX XX VX 98 90 60 83 71 64 Culbertsom T-1 437.800 2007 ACRNU 84 CR 93 93 85 50 70 63 50 70 63 50 70 63 50 70 63 50 70 63 50 70 63 50 70 63 50 70 63 50 70 63 50 70 64 70	Culbertson	A-1	47,000	2009	ACAM	XX	XX	XX		96	89	50	86	74	62
Calberson T.1 25,00 2009 ACRML XX XX VX 91 85 60 83 76 63 Cur Bank T.4 457,850 2007 ACRMU VX VX VX 93 83 50 81 71 63 540 63 543 Cur Bank T.4 104,013 2000 ACRMU 100 67 72 80 67 60 83 73 73 Deer Lodge A.3 330,000 1996 ACRM 81 74 80 67 60 83 78 71 Deer Lodge R.4 78,097 700 ACRM 81 74 80 67 80 60 83 73 74 83 73 73 63 73 73 75 50 73 74 75 50 73 75 50 73 75 50 73 75 50	Culbertson	R-1	180,000	2009	ACRML	XX	XX	XX		99	86	60	84	76	69
Cut Bank R-21 437,850 2007 ACRMU XX XX S9 93 83 50 81 71 61 Cut Bank T-4 156,800 1991 ACRMU 100 67 72 37 72 50 63 50 63 54 Deer Lodge A-3 55,310 1906 ACRMU 88 82 -62 41 67 50 63 50 63 56 40 Deer Lodge R-3 330,000 196 ACRMU 81 74 -80 67 70 66 89 79 71 Deer Lodge R-3 330,000 196 ACRMU 81 74 80 67 86 50 83 72 50 83 72 50 83 73 63 56 Deer Lodge R-3 32,000 ACRMU 81 74 70 84 80 91 150 <td< td=""><td>Culbertson</td><td>R-2</td><td>,</td><td>2009</td><td>ACRML</td><td>XX</td><td>XX</td><td>XX</td><td></td><td>98</td><td>90</td><td>60</td><td>87</td><td>78</td><td>71</td></td<>	Culbertson	R-2	,	2009	ACRML	XX	XX	XX		98	90	60	87	78	71
Cut Bank T-4 156.00 191 ACRMU 84 68 59 57 72 50 70 63 54 Cut Bank T-5 104.013 2000 ACRMU 100 67 70 63 50 62 44 420 Deer Lodge A-3 75.312 2009 ACAM 50 62 41 67 50 93 79 66 Deer Lodge R-3 33.000 199 ACAM 81 74 80 67 80 60 78 73 63 Dillon A-4 78.00 2020 ACAH 81 74 74 86 50 73 63 75 50 73 63 56 Dillon A-4 78.00 2008 ACAMU 91 90 81 80 75 60 73 65 56 Dillon R-3 212.257 198 ACRMU 74<	Culbertson	T-1	25,000	2009	ACRML	XX	XX	XX		91	85	60	83	76	68
Cut Bank T-5 104.013 2000 ACRMU 100 67 72 37 63 50 62 54 42 Deer Lodge A-3 55.110 190 ACAM 88 82 63 41 67 50 65 50 65 50 65 50 66 Deer Lodge R-3 330.000 1996 ACRML 81 74 80 67 80 60 88 79 71 53 63 53 63 53 73 63 50 84 70 65 96 77 80 60 88 79 71 50 73 65 50 81 81 72 75 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 65 50 73 <	Cut Bank	R-21	437,850	2007	ACRMU	XX		XX	93	93	83	50	81	71	61
Deer Lodge A-3 55,310 1996 ACAM 88 82 62 41 67 50 63 50 75 <td>Cut Bank</td> <td>T-4</td> <td>156,800</td> <td>1991</td> <td>ACRMU</td> <td>84</td> <td></td> <td>68</td> <td>59</td> <td>57</td> <td>72</td> <td>50</td> <td>70</td> <td>63</td> <td>54</td>	Cut Bank	T-4	156,800	1991	ACRMU	84		68	59	57	72	50	70	63	54
Deer LodgeA-575.3122009ACAM1008897500937966Deer LodgeR-3330.001996ACRML858092808260887771Deer LodgeT-231.0001997ACRML817480678060787363DillonA-392.250194ACAM84796596758450837363DillonA-478.2002002ACAH7968845060787365DillonA-478.2002002ACAH91908181727550736556DillonR-3467.4001998ACRMU76848283697550736556DillonR-3312.2751998ACRMU8484858068625060837665EkalakaA-1100,0002004ACRMUXXXX82838460837668EkalakaR-11235.802004ACRMUXXXX828560837668EkalakaR-11495.0002004ACRMUXXXX8479908560837668 <t< td=""><td>Cut Bank</td><td>T-5</td><td>104,013</td><td>2000</td><td>ACRMU</td><td>100</td><td></td><td>67</td><td>72</td><td>37</td><td>63</td><td>50</td><td>62</td><td>54</td><td>42</td></t<>	Cut Bank	T-5	104,013	2000	ACRMU	100		67	72	37	63	50	62	54	42
Deer Lodge R-3 330.00 1996 ACRML 85 80 90 77 91 60 88 78 71 Deer Lodge R-4 59,987 2006 ACRML 81 74 80 67 80 60 78 73 63 Dillon A-3 92.250 1994 ACAM 84 79 65 96 97 86 50 78 68 56 Dillon A-41 193,569 2008 ACAM 84 79 68 82 80 50 78 68 56 Dillon R-3 467,400 1998 ACRMU 76 84 88 88 80 68 62 50 61 53 39 Dillon R-3 218,740 1998 ACRMU XX XX 89 80 81 50 79 68 75 Dillon R-3 232.28 2094 </td <td>Deer Lodge</td> <td>A-3</td> <td>55,310</td> <td>1996</td> <td>ACAM</td> <td>88</td> <td>82</td> <td></td> <td>62</td> <td>41</td> <td>67</td> <td>50</td> <td>65</td> <td>56</td> <td>40</td>	Deer Lodge	A-3	55,310	1996	ACAM	88	82		62	41	67	50	65	56	40
Deer Lodge R-4 59,987 2006 ACRML 81 74 80 67 80 600 78 73 73 Dillon A-3 92,250 904 ACAM 84 79 55 60 67 80 600 78 63 60 83 73 63 Dillon A-11 193,569 2008 ACAM 91 82 83 69 75 50 73 65 56 Dillon R-21 187,440 2009 ACRMU 76 84 82 83 69 91 50 61 53 Dillon T-5 33,288 2009 ACRMU XX 89 86 89 81 50 60 83 76 68 Ekalaka R-1 100,00 204 ACRML XX XX 84 79 90 85 60 83 76 68 Ekalaka	Deer Lodge	A-5	75,312	2009	ACAM				100	88	97	50	93	79	66
Deer Lodge T-2 31,000 1997 ACRML 81 74 80 67 80 60 78 73 63 Dillon A-3 92,250 1994 ACAM 84 70 65 96 97 85 84 50 80 64 48 Dillon A-11 193,569 2008 ACAM ' 91 90 81 81 72 75 50 73 65 55 Dillon R-3 467,400 1998 ACRMU 70 81 81 72 75 50 73 65 55 Dillon R-3 127,275 1998 ACRMU 74 78 86 89 81 50 86 76 85 Dillon T-3 32,282 2004 ACRMU XX XX 87 86 89 81 50 86 80 80 80 80 80 <th< td=""><td>Deer Lodge</td><td>R-3</td><td>330,000</td><td>1996</td><td>ACRML</td><td>85</td><td>80</td><td></td><td>90</td><td>77</td><td>91</td><td>60</td><td>88</td><td>78</td><td>71</td></th<>	Deer Lodge	R-3	330,000	1996	ACRML	85	80		90	77	91	60	88	78	71
Dillon A-3 92,250 1994 ACAM 84 79 65 96 97 86 50 83 72 60 Dillon A-4 78,200 2002 ACAH 95 87 92 85 80 64 48 Dillon R-4 78,200 2008 ACRMU 91 90 81 81 72 75 50 73 65 56 Dillon R-4 58,500 1998 ACRMU 90 81 81 72 75 50 73 65 56 Dillon R-3 212,275 1998 ACRMU 84 88 85 80 68 62 50 61 53 39 Dillon T-5 33,288 2004 ACRML XX XX 89 86 69 81 60 83 76 68 Ekalaka R-11 35,000 2004 ACRMU	Deer Lodge	R-4	59,987	2006	ACRML				92	80	92	60	89	79	71
DillonA-478,2002002ACAH958792858450806448DillonA-11193,5692008ACAM908181727550736556DillonR-3467,4001998ACRMU76848283697550736556DillonR-21187,4402009ACRMU76848283697550786651DillonT-3212,2751998ACRMUXXXX89868981507665EkalakaA-1100,0002004ACRMLXXXX8479908560837668EkalakaR-123,0202004ACRMLXXXX8479908560837668EkalakaR-173,5002004ACRMLXXXX8479908560837668EnnisR-1495,0002004ACRMLXXXX8476508460837668EnnisR-1495,0002004ACRMU7777775050508460867770EnrisR-196,425190ACRMU777777505055507655<	Deer Lodge	T-2	31,000	1997	ACRML	81	74		80	67	80	60	78	73	63
Dillon A-11 193,569 2008 ACAM	Dillon	A-3	92,250	1994	ACAM	84	79	65	96	97	86	50	83	72	60
Dillon R-3 467,400 1998 ACRMU 91 90 81 81 72 75 50 73 65 56 Dillon R-4 \$\$5,00 1998 ACRMU 76 84 82 83 69 75 50 73 65 56 Dillon T-3 212,275 1998 ACRMU 84 85 80 68 62 50 63 50 Ekalaka R-1 100,000 2004 ACRML XX XX 89 80 89 81 60 83 76 68 Ekalaka R-11 35,850 204 ACRML XX XX 84 79 90 85 60 83 76 68 Ekalaka R-11 35,850 204 ACRML XX XX 84 79 90 85 60 83 76 68 Ekalaka R-1 35,00	Dillon	A-4	78,200	2002	ACAH		95	87	92	85	84	50	80	64	48
Dillon R-4 55,500 1998 ACRMU 76 84 82 83 69 75 50 73 65 51 Dillon R-21 187,440 2009 ACRMU 84 88 80 69 91 50 86 66 51 Dillon T-3 212,275 1998 ACRMU 84 88 80 68 62 50 61 53 39 Dillon T-3 212,275 1998 ACRMU XX XX 89 86 89 81 50 79 68 57 Ekalaka R-11 100,000 2004 ACRML XX XX 89 86 89 81 60 83 76 68 Ekalaka R-11 95,000 2004 ACRMU 77 77 58 60 78 50 73 63 53 Ennis T-1 96,00 210	Dillon	A-11	193,569	2008	ACAM				94	82	80	50	78	68	56
DillonR-21187,4402009ACRMU848885809150786651DillonT-3212,275198ACRMU84888580686250615339DillonT-533,2882009ACRMUV97888589898560837665EkalakaR-1249,1502004ACRMLXXXX898689898560837668EkalakaR-135,8502004ACRMLXXXX84798560837668EkalakaR-173,5002004ACRMLXXXX84798560837668EnnisR-11495,0002008ACRMU7777585050847363EnnisT-196,4251990ACRMU777777585050667770EurekaA-176,1252010ACAMXXXXXX878960867770EurekaR-135,0002010ACRMU777775505060867770EurekaR-135,0001994ACRMU7181715050608770EurekaR-136,000199	Dillon	R-3	467,400	1998	ACRMU	91	90	81	81	72	75	50	73	65	56
Dillon T-3 212,275 1998 ACRMU 84 88 85 80 68 62 50 61 53 39 Dillon T-5 33,288 2009 ACRMU V 97 89 89 81 50 61 53 65 Ekalaka R-1 100,000 2004 ACRML XX X8 89 81 50 60 83 76 68 Ekalaka R-11 35,850 2004 ACRML XX XX 82 85 90 85 60 83 76 68 Ekalaka T-1 73,500 2004 ACRMU X7 XX 82 85 90 85 60 83 76 68 Ennis R-1 96,425 1990 ACRMU 77 75 50 50 50 50 50 50 50 50 50 50 50 50 <td< td=""><td>Dillon</td><td>R-4</td><td>58,500</td><td>1998</td><td>ACRMU</td><td>76</td><td>84</td><td>82</td><td>83</td><td>69</td><td>75</td><td>50</td><td>73</td><td>65</td><td>56</td></td<>	Dillon	R-4	58,500	1998	ACRMU	76	84	82	83	69	75	50	73	65	56
DillonT-533,2882009ACRMU97898950867665EkalakaA-1100,002004ACAMXXXX8986898150796857EkalakaR-1135,802004ACRMLXXXX8986898160827567EkalakaR-1173,5002004ACRMLXXXX8985908560837668EnaisA-288,1281992ACAM88786668495046301EnnisR-1196,4251990ACRMU777758505750564627EurekaA-176,1252010ACRMU777758505750566427EurekaA-176,1252010ACRMLXXXXXX9377506553EurekaR-1315,002010ACRMLXXXXXX938860867770EurekaT-360,0002010ACRMLXXXXXX938860867770EurekaT-136,000104ACRMLXXXXXX93886086707262ForsythA-189,6401994ACRML78	Dillon	R-21	187,440	2009	ACRMU				98	90	91	50	78	66	51
Ekalaka A-1 100,000 2004 ACAM XX XX 89 86 89 81 50 79 68 57 Ekalaka R-1 249,150 2004 ACRML XX XX 92 83 90 84 60 82 75 67 Ekalaka R-11 35,850 2004 ACRML XX XX 84 79 90 85 60 83 76 68 Ennis A-2 88,128 1992 ACAM 88 78 66 68 49 50 46 30 1 Ennis T-1 96,425 1990 ACRMU 87 85 66 76 54 50 52 41 17 Ennis T-1 96,425 2010 ACRMU 87 85 66 76 54 50 50 53 Eureka A-1 76,125 2010 ACRML XX XX XX 93 87 50 50 53 E	Dillon	T-3	212,275	1998	ACRMU	84	88	85	80	68	62	50	61	53	39
EkalakaR-1249,1502004ACRMLXXXXYZ83908460827567EkalakaR-1135,8502004ACRMLXXXX8479908560837668EkalakaT-173,5002004ACRMLXXXX8479908560837668EnnisA-288,1281992ACAM88786650847363EnnisR-11495,0002008ACRMU87856650505750564627EnnisT-196,4251990ACRMU878566505750564627EurekaR-136,0002010ACRMLXXXXXX838860867770EurekaR-135,0002010ACRMLXXXXXX87978960867770EurekaT-156,7002010ACRMLXXXXXX87697960787262ForsythA-189,6401994ACRMU718171634542503050ForsythT-153,1201994ACRMU7373574545503050ForsythT-1 <t< td=""><td>Dillon</td><td>T-5</td><td>33,288</td><td>2009</td><td>ACRMU</td><td></td><td></td><td></td><td>97</td><td>89</td><td>89</td><td>50</td><td>86</td><td>76</td><td>65</td></t<>	Dillon	T-5	33,288	2009	ACRMU				97	89	89	50	86	76	65
EkalakaR-1135,8502004ACRMLXXXXXX8479908560837668EkalakaT-173,5002004ACRMLXXXXXX9285908560837668EnnisA-288,1281992ACAM887866765450847363EnnisT-196,4251990ACRMU878566765450524117EnnisT-2117,7751992ACRMU777758505750566427EurekaA-176,1252010ACRMLXXXXXX837860867770EurekaT-156,7002010ACRMLXXXXXXXX938760867770EurekaT-360,0002010ACRMLXXXXXX84697960787262ForsythA-189,6401994ACAM6974692526503000ForsythA-153,0201994ACAM797968785030500ForsythT-153,1201994ACAM797968785060777160650	Ekalaka	A-1	100,000	2004	ACAM	XX	XX	89	86	89	81	50	79	68	57
EkalakaT-173,5002004ACRMLXXXXYZ85908560837668EnnisA-288,1281992ACAM88786668495046301EnnisR-11495,0002008ACRMU878566765450547550564627EnnisT-2117,751992ACRMU7777585055564627EurekaA-176,1252010ACRMLXXXXXX937750756553EurekaR-1315,0002010ACRMLXXXXXX8360867770EurekaT-360,0002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX879760787260ForsythA-186,0001994ACRML71817156545033000ForsythR-136,0001994ACRML7373574545503050ForsythR-136,0001994ACRML7373574545503300ForsythR-136,0001994 <t< td=""><td>Ekalaka</td><td>R-1</td><td>249,150</td><td>2004</td><td>ACRML</td><td>XX</td><td>XX</td><td>92</td><td>83</td><td>90</td><td>84</td><td>60</td><td>82</td><td>75</td><td>67</td></t<>	Ekalaka	R-1	249,150	2004	ACRML	XX	XX	92	83	90	84	60	82	75	67
EnnisA-288,1281992ACAM88786668495046301EnnisT-196,4251990ACRMU878566765450524117EnnisT-2117,7751992ACRMU8785667654505050564627EurekaA-176,1252010ACAMXXXXXX937750756553EurekaR-1315,0002010ACRMLXXXXXX938860867770EurekaT-156,7002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX697960787262ForsythA-189,6401994ACRMU7181715654503000ForsythR-136,0001994ACRMU7881634542502500ForsythR-136,0001994ACRMU7881634542503050ForsythR-136,0001994ACRMU737357735060675422ForsythR-136,0001994ACRMU	Ekalaka	R-11	35,850	2004	ACRML	XX	XX	84	79	90	85	60	83	76	68
EnnisR-11495,0002008ACRMU878566765450524117EnnisT-2117,771992ACRMU777758505750564627EurekaA-176,1252010ACRMXXXXXX937750756653EurekaR-1315,0002010ACRMLXXXXXX938860867770EurekaT-360,0002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX697960787262ForsythA-189,6401994ACRMU7181715654503050ForsythR-136,0001994ACRMU73374545503050ForsythT-153,1201994ACRMU733757735060685068ForsythT-153,1201994ACRML73735773506075200ForsythT-153,1201994ACRML737357	Ekalaka	T-1	73,500	2004	ACRML	XX	XX	92	85	90	85	60	83	76	68
EnnisT-196,4251990ACRMU878566765450524117EnnisT-2117,7751992ACRMU777758505750564627EurekaA-176,1252010ACAMXXXXXX937750756553EurekaR-1315,0002010ACRMLXXXXXX938860867770EurekaT-360,0002010ACRMLXXXXXX978960867262EurekaT-360,0002010ACRMLXXXXXX8760787262ForsythA-189,6401994ACRMU71817156545045290ForsythR-136,0001994ACRMU78816345425045290ForsythT-153,1201994ACRMU73735745455045290ForsythT-295,5501994ACRMU737357454550685945Fort BentonR-132,6001999ACML8181838160675422Fort BentonT-145,6401999ACML818681 <td>Ennis</td> <td>A-2</td> <td>88,128</td> <td>1992</td> <td>ACAM</td> <td>88</td> <td>78</td> <td>66</td> <td></td> <td>68</td> <td>49</td> <td>50</td> <td>46</td> <td>30</td> <td>1</td>	Ennis	A-2	88,128	1992	ACAM	88	78	66		68	49	50	46	30	1
EnnisT-2117,7751992ACRMU777758505750564627EurekaA-176,1252010ACAMXXXXXX937750756553EurekaR-1315,0002010ACRMLXXXXXX938860867770EurekaT-156,7002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX877960787262ForsythA-189,6401994ACAM69746925265045290ForsythR-156,0001994ACRMU71817156545045290ForsythT-153,1201994ACRMU7373574545503050ForsythT-295,5501994ACRMU7373574545503050Fort BentonA-198,7841999ACRML8186818860797360Fort BentonT-145,6401999ACRML8186818860797360Fort BentonT-145,6101999ACRML81868	Ennis	R-11	495,000	2008	ACRMU					90	86	50	84	73	63
EurekaA-176,1252010ACAMXXXXXXXX937750756553EurekaR-1315,0002010ACRMLXXXXXX938860867770EurekaT-156,7002010ACRMLXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX697960787262ForsythA-189,6401994ACAM69746925265045290ForsythR-136,0001994ACRMU71817156545045290ForsythT-153,1201994ACRMU7373574545503050ForsythT-295,5501994ACRMU7373577350465045290Fort BentonA-198,7841999ACRML848577735060675422Fort BentonT-145,6401999ACRML778078855060777160Fort BentonT-145,6401999ACRML778078855060777160GardinerR-1165,01519	Ennis	T-1	96,425	1990	ACRMU	87	85	66		76	54	50	52	41	17
Eureka R-1 315,000 2010 ACRML XX XX XX YX 93 88 60 86 77 70 Eureka T-1 56,700 2010 ACRML XX XX XX 97 89 60 86 77 70 Eureka T-3 60,000 2010 ACRML XX XX 69 79 60 78 72 62 Forsyth A-1 89,640 1994 ACAM 69 74 69 25 26 50 45 29 0 Forsyth R-1 36,000 1994 ACRMU 71 81 71 56 54 50 45 29 0 Forsyth T-1 53,120 1994 ACRMU 73 73 57 45 50 30 5 0 Fort Benton A-1 98,784 1999 ACRML 73 73 57 73 50 60 67 54 22 Fort Benton T-1 <td>Ennis</td> <td>T-2</td> <td>117,775</td> <td>1992</td> <td>ACRMU</td> <td>77</td> <td>77</td> <td>58</td> <td></td> <td>50</td> <td>57</td> <td>50</td> <td>56</td> <td>46</td> <td>27</td>	Ennis	T-2	117,775	1992	ACRMU	77	77	58		50	57	50	56	46	27
EurekaT-156,7002010ACRMLXXXXXXXXXX978960867770EurekaT-360,0002010ACRMLXXXXXX697960787262ForsythA-189,6401994ACAM697469252650300ForsythR-136,0001994ACRMU71817156545045290ForsythT-153,1201994ACRMU7881634542503050ForsythT-295,5501994ACRMU737357454550685945Fort BentonA-198,7841999ACRML8186818860675422Fort BentonR-1322,5001999ACRML8186818860797363Fort BentonT-145,6401999ACRML777380788560777360Fort BentonT-13101,5002015ACPL7780788860797363Fort BentonT-13101,5002015ACPL41505038170GardinerR-168,6752002ACAM837971 <td< td=""><td>Eureka</td><td>A-1</td><td>76,125</td><td>2010</td><td>ACAM</td><td>XX</td><td></td><td>XX</td><td>XX</td><td>93</td><td>77</td><td>50</td><td>75</td><td>65</td><td>53</td></td<>	Eureka	A-1	76,125	2010	ACAM	XX		XX	XX	93	77	50	75	65	53
EurekaT-360,0002010ACRMLXXXX697960787262ForsythA-189,6401994ACAM697469252650300ForsythR-136,0001994ACRMU71817156545045290ForsythT-153,1201994ACRMU7881634542503050ForsythT-295,5501994ACRMU73735745455030550Fort BentonA-198,7841999ACAM79796878735066675422Fort BentonR-1322,5001999ACRML8184857773600675422Fort BentonT-145,6401999ACRML77807885600777160Fort BentonT-145,6401999ACRML77807885503050947765GardinerR-1105,0151996ACPL4245503050645538GlasgowA-7168,6752002ACAM837971696650645538GlasgowR-13101,2502003ACRMU	Eureka	R-1	315,000	2010	ACRML	XX		XX	XX	93	88	60	86	77	70
ForsythA-1 $89,640$ 1994 ACAM 69 74 69 25 26 50 3 0 0 ForsythR-1 $36,000$ 1994 ACRMU 71 81 71 56 54 50 45 29 0 ForsythT-1 $53,120$ 1994 ACRMU 78 81 63 45 42 50 25 0 0 ForsythT-2 $95,550$ 1994 ACRMU 73 73 57 45 45 50 68 59 45 Fort BentonA-1 $98,784$ 1999 ACRM 79 79 68 78 50 60 67 54 22 Fort BentonR-1 $322,500$ 1999 ACRML 81 86 81 88 60 79 73 63 Fort BentonT-1 $45,640$ 1999 ACRML 77 80 78 85 60 77 73 60 67 54 22 Fort BentonT-1 $45,640$ 1999 ACRML 77 80 78 85 60 77 73 60 67 50 94 77 63 Fort BentonT-13 $101,500$ 2015 $ACPL$ 42 45 50 30 5 0 GardinerR-1 $165,015$ 1996 $ACPL$ 42 45 50 30 5 0 GlasgowA-7 <th< td=""><td>Eureka</td><td>T-1</td><td>56,700</td><td>2010</td><td>ACRML</td><td>XX</td><td></td><td>XX</td><td>XX</td><td>97</td><td>89</td><td>60</td><td>86</td><td>77</td><td>70</td></th<>	Eureka	T-1	56,700	2010	ACRML	XX		XX	XX	97	89	60	86	77	70
ForsythR-1 $36,000$ 1994 $ACRMU$ 71 81 71 56 54 50 45 29 0 ForsythT-1 $53,120$ 1994 $ACRMU$ 78 81 63 45 42 50 25 0 0 ForsythT-2 $95,550$ 1994 $ACRMU$ 73 73 57 45 45 50 30 5 0 Fort BentonA-1 $98,784$ 1999 $ACAM$ 79 79 68 78 50 68 59 45 Fort BentonR-1 $322,500$ 1999 $ACRML$ 84 85 77 73 600 67 54 22 Fort BentonT-1 $45,640$ 1999 $ACRML$ 81 86 81 88 600 79 73 63 Fort BentonT-1 $45,640$ 1999 $ACRML$ 77 80 78 85 600 77 71 60 Fort BentonT-13 $101,500$ 2015 $ACPL$ 42 45 50 30 5 0 GardinerR-1 $165,015$ 1996 $ACPL$ 41 50 50 30 5 0 GardinerR-1 $165,015$ 1996 $ACPL$ 41 50 50 38 17 0 GlasgowR-13 $101,250$ 2003 $ACRMU$ 100 93 86 84 86 50 84 <	Eureka	T-3	60,000	2010	ACRML			XX	XX	69	79	60	78	72	62
ForsythT-1 $53,120$ 1994 ACRMU 78 81 63 45 42 50 25 0 0 ForsythT-2 $95,550$ 1994 ACRMU 73 73 57 45 45 50 30 5 0 Fort BentonA-1 $98,784$ 1999 ACAM 79 79 68 78 50 68 59 45 Fort BentonR-1 $322,500$ 1999 ACRML 84 85 77 73 60 67 54 22 Fort BentonT-1 $45,640$ 1999 ACRML 81 86 81 88 60 79 73 63 Fort BentonT-2 $31,745$ 1999 ACRML 77 80 78 85 60 77 71 60 Fort BentonT-13 $101,500$ 2015 $ACPL$ -42 45 50 30 5 0 Fort BentonT-13 $101,500$ 2015 $ACPL$ -42 45 50 30 5 0 GardinerR-1 $165,015$ 1996 $ACPL$ -42 45 50 30 5 0 GardinerR-1 $105,015$ 1996 $ACPL$ -41 50 50 38 17 0 GlasgowR-13 $101,250$ 2003 $ACRMU$ 100 93 86 84 86 50 84 73 63 Gla	Forsyth	A-1	89,640	1994	ACAM	69	74	69	25	26		50	3	0	0
ForsythT-295,5501994ACRMU7373574545503050Fort BentonA-198,7841999ACAM7979687850685945Fort BentonR-1322,5001999ACRML8485777360675422Fort BentonT-145,6401999ACRML8186818860797363Fort BentonT-231,7451999ACRML7780788560777160Fort BentonT-13101,5002015ACPL -42 45503050GardinerR-1165,0151996ACPL -42 45503050GardinerT-13,8231996ACPL -41 505038170GlasgowA-768,6752002ACAM837971696650645538GlasgowR-14298,1252003ACRMU1009386848650847363GlasgowR-14298,1252003ACRMU1009286809050877665GlasgowR-15500,1002012ACRH787168476050595030Glasgow	Forsyth	R-1	36,000	1994	ACRMU	71	81	71	56	54		50	45	29	0
Fort BentonA-198,7841999ACAM7979687850685945Fort BentonR-1322,5001999ACRML8485777360675422Fort BentonT-145,6401999ACRML8186818860797363Fort BentonT-231,7451999ACRML7780788560777160Fort BentonT-13101,5002015ACPL77807885503050GardinerR-1165,0151996ACPL4245503050GardinerR-1105,0151996ACPL41505038170GlasgowA-768,6752002ACRM837971696650645538GlasgowR-13101,2502003ACRMU1009386848650847363GlasgowR-14298,1252003ACRMU1009286809050877665GlasgowR-14298,1252003ACRMU1009286809050897768GlasgowR-15500,1002012ACRH787168476050595030	Forsyth	T-1	53,120	1994	ACRMU	78	81	63	45	42			25	0	0
Fort BentonR-1 $322,500$ 1999 ACRML 84 85 77 73 60 67 54 22 Fort BentonT-1 $45,640$ 1999 ACRML 81 86 81 88 60 79 73 63 Fort BentonT-2 $31,745$ 1999 ACRML 77 80 78 85 60 77 71 60 Fort BentonT-13 $101,500$ 2015 ACPL 77 80 78 85 50 94 77 65 GardinerR-1 $165,015$ 1996 ACPL 42 45 50 30 5 0 GardinerT-1 $3,823$ 1996 ACPL 41 50 50 38 17 0 GlasgowA-7 $68,675$ 2002 ACAM 83 79 71 69 66 50 64 55 38 GlasgowR-13 $101,250$ 2003 ACRMU 100 93 86 84 86 50 84 73 63 GlasgowR-14 $298,125$ 2003 ACRMU 100 92 86 80 90 50 87 76 65 GlasgowR-14 $298,125$ 2003 ACRH 78 71 68 47 60 50 89 77 68 GlasgowT-1 $58,500$ 1986 ACRH 78 71 68 47 60	Forsyth	T-2	,	1994	ACRMU	73	73	57	45				30	5	0
Fort BentonT-145,6401999ACRML8186818860797363Fort BentonT-2 $31,745$ 1999ACRML7780788560777160Fort BentonT-13 $101,500$ 2015ACPL 77 80788550947765GardinerR-1 $165,015$ 1996ACPL 42 45 503050GardinerT-1 $3,823$ 1996ACPL 41 50 5038170GlasgowA-768,6752002ACAM837971696650645538GlasgowR-13101,2502003ACRMU1009386848650847363GlasgowR-14298,1252003ACRMU1009286809050877665GlasgowR-15500,1002012ACRH787168476050595030GlasgowT-158,5001986ACRH787168476050595030GlasgowT-158,5001986ACRH787168476050595030GlasgowT-370,9001996ACRH71585965635062<	Fort Benton	A-1			ACAM		79		68	78					45
Fort BentonT-2 $31,745$ 1999 ACRML 77 80 78 85 60 77 71 60 Fort BentonT-13 $101,500$ 2015 ACPL 42 45 50 94 77 65 GardinerR-1 $165,015$ 1996 ACPL 41 50 50 30 5 0 GardinerT-1 $3,823$ 1996 ACPL 41 50 50 38 17 0 GlasgowA-7 $68,675$ 2002 ACAM 83 79 71 69 66 50 64 55 38 GlasgowR-13 $101,250$ 2003 ACRMU 100 93 86 84 86 50 84 73 63 GlasgowR-14 $298,125$ 2003 ACRMU 100 92 86 80 90 50 87 76 65 GlasgowR-14 $298,125$ 2003 ACRM 78 71 68 47 60 50 89 77 68 GlasgowR-14 $298,125$ 2003 ACRH 78 71 68 47 60 50 89 77 68 GlasgowT-1 $58,500$ 1986 ACRH 78 71 68 47 60 50 59 50 30 GlasgowT-3 $70,900$ 1996 ACRH 71 58 59 65 63 50	Fort Benton	R-1	322,500	1999	ACRML		84	85	77	73		60	67	54	22
Fort BentonT-13101,5002015ACPL50947765GardinerR-1165,0151996ACPL4245503050GardinerT-13,8231996ACPL41505038170GlasgowA-768,6752002ACAM837971696650645538GlasgowR-13101,2502003ACRMU1009386848650847363GlasgowR-14298,1252003ACRMU1009286809050877665GlasgowR-15500,1002012ACRH1009350897768GlasgowT-158,5001986ACRH787168476050595030GlasgowT-370,9001996ACRH715859656350625541	Fort Benton	T-1	45,640	1999	ACRML		81	86		88		60	79	73	63
Gardiner R-1 165,015 1996 ACPL 42 45 50 30 5 0 Gardiner T-1 3,823 1996 ACPL 41 50 50 38 17 0 Glasgow A-7 68,675 2002 ACAM 83 79 71 69 66 50 64 55 38 Glasgow R-13 101,250 2003 ACRMU 100 93 86 84 86 50 84 73 63 Glasgow R-14 298,125 2003 ACRMU 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 78 71 68 47 60 50 59 <th< td=""><td>Fort Benton</td><td>T-2</td><td>31,745</td><td>1999</td><td>ACRML</td><td></td><td>77</td><td>80</td><td>78</td><td>85</td><td></td><td>60</td><td>77</td><td></td><td>60</td></th<>	Fort Benton	T-2	31,745	1999	ACRML		77	80	78	85		60	77		60
Gardiner T-1 3,823 1996 ACPL 41 50 50 38 17 0 Glasgow A-7 68,675 2002 ACAM 83 79 71 69 66 50 64 55 38 Glasgow R-13 101,250 2003 ACRMU 100 93 86 84 86 50 84 73 63 Glasgow R-14 298,125 2003 ACRMU 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 93 50 89 77 68 Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 <t< td=""><td>Fort Benton</td><td>T-13</td><td>101,500</td><td>2015</td><td>ACPL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>94</td><td>77</td><td>65</td></t<>	Fort Benton	T-13	101,500	2015	ACPL							50	94	77	65
Glasgow A-7 68,675 2002 ACAM 83 79 71 69 66 50 64 55 38 Glasgow R-13 101,250 2003 ACRMU 100 93 86 84 86 50 84 73 63 Glasgow R-14 298,125 2003 ACRMU 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 93 50 89 77 68 Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 50 30 Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Gardiner	R-1	165,015	1996	ACPL				42	45		50	30	5	0
Glasgow R-13 101,250 2003 ACRMU 100 93 86 84 86 50 84 73 63 Glasgow R-14 298,125 2003 ACRMU 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 92 86 80 90 50 87 76 65 Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 50 30 Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Gardiner	T-1	3,823	1996					41	50		50	38	17	0
Glasgow R-14 298,125 2003 ACRMU 100 92 86 80 90 50 87 76 65 Glasgow R-15 500,100 2012 ACRH 100 93 50 89 77 68 Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 50 30 Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Glasgow										66	50	64		
Glasgow R-15 500,100 2012 ACRH 100 93 50 89 77 68 Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 50 30 Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Glasgow	R-13	101,250	2003	ACRMU		100	93	86	84	86	50	84	73	63
Glasgow T-1 58,500 1986 ACRH 78 71 68 47 60 50 59 50 30 Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Glasgow	R-14	298,125	2003	ACRMU		100	92	86	80	90	50	87	76	65
Glasgow T-3 70,900 1996 ACRH 71 58 59 65 63 50 62 55 41	Glasgow	R-15	500,100	2012	ACRH					100	93	50	89	77	68
	Glasgow	T-1	58,500	1986	ACRH		78	71	68	47	60	50	59	50	30
Glasgow T-5 74,250 1996 ACRH 87 85 68 53 68 50 67 62 53	Glasgow	T-3	70,900	1996			71	58	59	65	63	50	62	55	41
	Glasgow	T-5	74,250	1996	ACRH		87	85	68	53	68	50	67	62	53

Airport City (Branch Name) Section (sq. feet) Area (sq. feet) Year Group (Branch Name) 2000 2003 2006 2009 2012 2015 PCI 2016 2020 2 Glendive A-1 145,700 2003 ACAH XX XX 83 69 62 50 50 46 30 Glendive A-1 465,000 2007 ACRH XX XX 81 74 50 68 63 50 45 50 46 30 Glendive R-1 465,000 2007 ACRH XX XX 80 77 50 76 48 50 35 50 57 48 50 36 50 57 48 50 38 Glendive T-1 31,000 2007 ACRMU XX XX XX 50 55 8 0 50 87 76 62 61 50 60 52 5 <	PCI RATINGS	JF PO					
(Branch Name) (sq. feet) (sq. feet) (sq. feet) Glendive A-1 145,700 2003 ACAH XX XX 83 69 62 50 50 50 30 39 Glendive Glendive R-1 465,000 2007 ACRH XX XX 81 74 50 68 63 Glendive R-2 105,400 2007 ACRH XX XX 80 77 50 63 56 63 56 63 56 63 50 57 48 50 67 48 50 67 48 50 67 48 50 68 58 50 57 74 60 61 50 87 76 62 61 50 82 72 61 610 60 52 55 8 0 50 55 8 0 50 50 50 50 50 50 50 <t< th=""><th>· · · · · · · · · · · · · · · · · · ·</th><th></th><th>Family</th><th>Constr.</th><th></th><th></th><th></th></t<>	· · · · · · · · · · · · · · · · · · ·		Family	Constr.			
Glendive A-1 145,700 2003 ACAH XX XX XX R3 69 62 50 50 39 . Glendive A-2 50,000 2002 ACAM XX 93 81 60 57 50 46 30 Glendive R-1 465,000 2007 ACRH XX XX 80 77 50 68 63 . Glendive R-2 105,400 2007 ACRH XX XX 80 77 50 63 56 . Glendive T-1 31,000 2007 ACRH XX XX 88 74 71 50 63 56 . 50 57 48 .	00 2003 2006 2009 2012 2015 PCI 2016 2	2000	Group	Year		Section	
Glendive A-2 50,000 2002 ACAM XX 93 81 60 57 50 46 30 Glendive R-1 465,000 2007 ACRH XX XX 81 74 50 68 63 50 67 50 67 68 63 50 50 70 64 30 Glendive R-3 174,000 2003 ACRMU XX XX 88 74 71 50 63 50 57 48 50 61 50 82 72 60 61 50 82 72 60 61 50 82 72 60 61 50 82 72 60 61 50 82 72 60 61 50 82 72 60 61 50 82 72 60 62 61 50 60 52 7 60 62 61 50 60 52 7 60 62 61 50 60 52 7 60 <th></th> <th></th> <th></th> <th></th> <th>- · · · ·</th> <th></th> <th></th>					- · · · ·		
Glendive $R.1$ 465,000 2007 $ACRH$ XX XX XX <td></td> <td></td> <td></td> <td></td> <td>· · · · · ·</td> <td></td> <td></td>					· · · · · ·		
Glendive R-2 105,400 2007 ACRH XX XX 80 77 50 70 64 64 64 66 63 50 70 64 64 66 66 66 50 57 48 66 63 50 57 48 66 63 50 57 48 66 63 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 82 72 60 61 50 82 72 60 61 50 82 72 60 50 82 72 60 60 52 73 60 60 52 75 8 0 60 60 60 52 75 8 0 60 52 75 8 0 76 60 60 60 60 60 61 60 61 60 61 60 61 60 61 60 61 80 60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Glendive R-3 174,000 2003 ACRMU XX XX <th< td=""><td></td><td></td><td></td><td></td><td>· · · · · ·</td><td></td><td></td></th<>					· · · · · ·		
Glendive T-1 $31,000$ 2007 $ACRH$ XX YX 66 56 50 57 48 $.50$ 38 Glendive $T-5$ $59,220$ 2007 $ACRMU$ XX 94 94 94 94 96 82 72 48 37 76 60 82 76 67 62 61 50 87 76 Hamilton R-1A $165,000$ 1992 $ACRMU$ 93 90 74 62 61 50 82 72 78 Hamilton R-2 $150,000$ 1992 $ACRML$ 89 90 80 84 50 82 71 78 60 91 78 78 60 91 78 78 60 91 80 71 83 71 80 71 83 71					· · · · · ·		
Glendive T-2 $38,000$ 2002 $ACRMU$ XX 94 82 68 58 50 50 38 32							
Glendive T-5 59,220 2007 ACRMU 94 94 94 50 82 72 60 Glendive T-7 88,200 2012 ACRMU 100 50 87 76 60 Hamilton A-2 145,800 1983 STPA 71 44 34 39 15 55 8 0 Hamilton R-1A 165,000 1992 ACRMU 95 87 67 62 61 50 60 52 3 Hamilton R-2 150,000 1992 ACRMU 93 90 74 62 61 50 60 52 3 Hamilton R-1 336,750 2014 ACRML 89 90 80 84 82 72 60 Hardin R-1 336,750 2014 ACRML 89 90 84 87 80 60 91 80 60 91 80 60 91 80 60 91 80 60 91 80 <td></td> <td></td> <td></td> <td></td> <td>· · · · ·</td> <td></td> <td></td>					· · · · ·		
Glendive T-7 88,200 2012 ACRMU 100 50 87 76 67 Hamilton A-2 145,800 1983 STPA 71 44 34 39 15 55 8 0 Hamilton R-1A 165,000 1992 ACRMU 95 87 67 62 61 50 60 52 53 Hamilton R-2 150,000 1992 ACRMU 93 90 74 62 61 50 60 52 53 Hamilton T-5 53,912 2002 ACRMU 89 90 80 84 50 82 72 60 Hardin A-1 106,000 2014 ACRML 89 90 80 84 50 82 71 60 91 80 73 60 91 80 73 60 91 80 73 60 73 73 60 74 73 60 70 60 73 73 60 74 73 </td <td></td> <td>XX</td> <td></td> <td></td> <td></td> <td></td> <td></td>		XX					
HamiltonA-2145,8001983STPA71443439155580HamiltonR-1A165,0001992ACRMU95876762615060525253HamiltonR-2150,0001992ACRMU93907462615060525253HamiltonT-553,9122002ACRMU8990808450827260HardinA-1106,0002014ACAM8990808450827260HardinR-1336,7502014ACRML60918060797360HardinT-188,3702003ACRML9084778060797360HarlemR-11288,7502003ACRML8777747160706073HarlemT-1128,1742003ACRMLXXXXXXXXXX5010084HarlowtonA-2149,5052016ACAMXXXXXXXXXXXX5010084HarlowtonR-21252,0002016ACRMLXXXXXXXXXX5010084HarlowtonR-2142,6602016ACRMLXXXXXXXXXX50							
HamiltonR-1A165,0001992ACRMU958767626150605253HamiltonR-2150,0001992ACRMU939074626150605253HamiltonT-553,9122002ACRMU8990808450827260HardinA-1106,0002014ACRML8990808450827260HardinR-1336,7502014ACRML509178609180HardinT-188,3702014ACRML508271609180HarlemA-1165,3202003ACRML9084778060797360HarlemR-1128,7502003ACRML8777747160706073HarlemT-1128,7502016ACRMLXXXXXXXXXXXXXXXXXXXXXXXX7471607060736073607360736073607360736073607360736073607360736073607360736073607360746474747160					-		
Hamilton R-2 150,000 1992 ACRMU 93 90 74 62 61 50 60 52 53 Hamilton T-5 53,912 2002 ACRMU 89 90 80 84 50 82 72 72 Hardin A-1 106,000 2014 ACAM 89 90 80 84 50 82 72 60 91 78 60 91 80 74 61 50 91 78 60 91 80 76 60 91 80 77 80 60 91 80 71 80 71 80 71 80 71 80 71 80 71 80 70 71 60 70 60 73 80 71 80 70 71 80 70 71 80 60 79 73 73 73 71 60 70 60 70 60 70 80 70 80 70 80 73 80 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Hamilton T-5 53,912 2002 ACRMU 89 90 80 84 50 82 72 60 Hardin A-1 106,000 2014 ACAM 50 91 78 60 Hardin R-1 336,750 2014 ACRML 60 91 80 71 Hardin T-1 88,370 2014 ACRML 60 91 80 73 60 91 80 73 76 60 91 80 71 80 60 91 80 73 76 81 85 50 82 71 60 70 60 71 80 60 79 73 76 74 71 60 70 60 70 60 70 60 70 60 70 80 84 77 80 60 70 80 84 73 80 80 84 76 81 81 81 81 81 81 81 81 81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
HardinA-1106,0002014ACAM50917860HardinR-1336,7502014ACRML609180918091HardinT-188,3702014ACRML609180918091HarlemA-1165,3202003ACAM9284818550827160HarlemR-11288,7502003ACRML9084778060797360HarlemT-1128,1742003ACRML8777747160706070HarlemT-1128,1742003ACRMLXXXXXXXX5010084HarlemT-1128,1742003ACRMLXXXXXXXX5010084HarlemT-1128,1742003ACRMLXXXXXXXXXX5010084HarlemR-2125,0002016ACRMLXXXXXXXXXX5010084100HavreA-5109,3501994ACAH766454436733503122HavreR-15530,0002015ACRMUXXXXXXXXXX10050978571HavreR-2135,0002010ACRMUXXXX <t< td=""><td></td><td>93</td><td></td><td></td><td></td><td></td><td></td></t<>		93					
HardinR-1336,7502014ACRML609180HardinT-188,3702014ACRML609180HarlemA-1165,3202003ACAM9284818550827160HarlemR-11288,7502003ACRML9084778060797360HarlemT-1128,1742003ACRML8777747160706070HarlemT-1128,1742003ACRMLXXXXXXXX501008477HarlowtonA-2149,5052016ACAMXXXXXXXX501008470HarlowtonR-21252,0002016ACRMLXXXXXXXX501008470HarlowtonT-2142,6602016ACRMLXXXXXXXX501008470HavreA-5109,3501994ACAH766454436733503122HavreR-15530,0002015ACRMUXXXXXXXXXX50938160HavreR-22171,600200ACRMUXXXXXXXX5050938160JordanA-1150,0002003ACRMLXX949							
HardinT-1 $88,370$ 2014 ACRML60 91 80 HarlemA-11 $65,320$ 2003 ACAM 92 84 81 85 50 82 71 60 HarlemR-11 $288,750$ 2003 ACRML 90 84 77 80 60 79 73 60 HarlemT-11 $28,174$ 2003 ACRML 87 77 74 71 60 70 60 84 71 80 70 60 70 60 84 71 80 70 60 70 60 70 60 70 60 70 60 70 60 84 71 80 70 84 70 84 71 80 84 70 84 71 80 70 84 70 84 71 80 70 84 71 80 84 71 80 70 84 71 80 70 84 71 80 70 84 71 80 70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Hardin</td>							Hardin
HarlemA-11 $65,320$ 2003 ACAM 92 84 81 85 50 82 71 60 HarlemR-11 $288,750$ 2003 ACRML 90 84 77 80 60 79 73 60 HarlemT-11 $28,174$ 2003 ACRML 87 77 74 71 60 70 60 84 71 70 71 <td>60 <i>91</i></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Hardin</td>	60 <i>91</i>						Hardin
HarlemR-11288,7502003ACRML9084778060797373HarlemT-1128,1742003ACRML877774716070617060706170607061706170617061706170617071716070717160707171607071717160707171716070717171 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>T-1</td><td>Hardin</td></t<>						T-1	Hardin
HarlemT-11 $28,174$ 2003 ACRML 87 77 74 71 60 70 60 84 Harlowton $R-21$ $252,000$ 2016 $ACRML$ XX <			ACAM		,		Harlem
HarlowtonA-2149,5052016ACAMXX <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Harlem</td></th<>							Harlem
HarlowtonR-21252,0002016ACRMLXX<							Harlem
HarlowtonT-2142,6602016ACRMLXX <t< td=""><td>X XX XX XX XX 50 100</td><td>XX</td><td>ACAM</td><td>2016</td><td>49,505</td><td></td><td>Harlowton</td></t<>	X XX XX XX XX 50 100	XX	ACAM	2016	49,505		Harlowton
HavreA-5109,3501994ACAH766454436733503122HavreR-15530,0002015ACRMUXXXXXXXXXX10050978574HavreR-22171,6002010ACRMUXXXXXXXXXX989650938165HavreT-431,5001993ACRMU79737666646650655865JordanA-1150,0002003ACRMU79737666646650655865JordanR-1322,5002003ACRMLXX9183807860777161JordanT-124,5382003ACRMLXX9490947860777161LaurelA-3171,3602001ACAM9384698167506556655665LaurelR-4390,0002000ACRMU938170796150605250505050505250LaurelT-898,5502000ACRMU93817079615069625250	X XX XX XX XX 60 100	XX	ACRML	2016	252,000	R-21	Harlowton
HavreR-15530,0002015ACRMUXXXXXXXXXXXX10050978576HavreR-22171,6002010ACRMUXXXXXXXX989650938196HavreT-431,5001993ACRMU79737666646650655846JordanA-1150,0002003ACRML79737666646650655846JordanR-1322,5002003ACRMLXX9088887650746450JordanR-1322,5002003ACRMLXX918380786077717160JordanT-124,5382003ACRMLXX938469816750655666LaurelA-3171,3602001ACAM938469816750655666LaurelR-4390,0002000ACRMU938170796150605252LaurelT-898,5502000ACRMU918175877150696252	X XX XX XX XX 60 100	XX	ACRML	2016	42,660	T-21	Harlowton
HavreR-22171,6002010ACRMUXXXXXXXX989650938193HavreT-431,5001993ACRMU79737666646650655865JordanA-1150,0002003ACAM9088887650746450JordanR-1322,5002003ACRMLXX9183807860777160JordanT-124,5382003ACRMLXX9490947860777160LaurelA-3171,3602001ACAM938469816750655666LaurelR-4390,0002000ACRMU938170796150605250LaurelT-898,5502000ACRMU918175877150696250	'6 64 54 43 67 33 50 31	76					Havre
HavreT-431,5001993ACRMU79737666646650655865JordanA-1150,0002003ACAM9088887650746450JordanR-1322,5002003ACRMLXX9183807860777160JordanT-124,5382003ACRMLXX9490947860777160LaurelA-3171,3602001ACAM938469816750655666LaurelR-4390,0002000ACRMU938170796150605250LaurelT-898,5502000ACRMU918175877150696250	X XX XX XX XX 100 50 97	XX	ACRMU	2015	530,000		Havre
JordanA-1150,0002003ACAM9088887650746477JordanR-1322,5002003ACRMLXX9183807860777171JordanT-124,5382003ACRMLXX94909478607771717171LaurelA-3171,3602001ACAM938469816750655676LaurelR-4390,0002000ACRMU938170796150605272LaurelT-898,5502000ACRMU918175877150696252	X XX XX XX 98 96 50 93	XX	ACRMU	2010	171,600		Havre
JordanR-1322,5002003ACRMLXX9183807860777171JordanT-124,5382003ACRMLXX949094786077717	¹ 9 73 76 66 64 66 50 65	79					Havre
JordanT-124,5382003ACRMLXX9490947860777171LaurelA-3171,3602001ACAM93846981675065564LaurelR-4390,0002000ACRMU938170796150605252LaurelT-898,5502000ACRMU918175877150696252			ACAM				Jordan
Laurel A-3 171,360 2001 ACAM 93 84 69 81 67 50 65 56 4 Laurel R-4 390,000 2000 ACRMU 93 81 70 79 61 50 60 52 3 Laurel T-8 98,550 2000 ACRMU 91 81 75 87 71 50 69 62 3	X 91 83 80 78 60 77	XX		2003	322,500	R-1	Jordan
Laurel R-4 390,000 2000 ACRMU 93 81 70 79 61 50 60 52 53 Laurel T-8 98,550 2000 ACRMU 91 81 75 87 71 50 69 62 52 53	X 94 90 94 78 60 77	XX		2003	24,538	T-1	Jordan
Laurel T-8 98,550 2000 ACRMU 91 81 75 87 71 50 69 62	93 84 69 81 67 50 65			2001	171,360	A-3	Laurel
	93 81 70 79 61 50 60		ACRMU		,	R-4	Laurel
	91 81 75 87 71 50 69						Laurel
Laurel T-9 67,060 2001 ACRMU 95 86 80 91 70 50 68 61	95 86 80 91 70 50 68						Laurel
Lewistown A-2 30,744 1993 ACPL 79 83 65 58 49 54 50 53 42	9 83 65 58 49 54 50 53	79		1993	30,744		Lewistown
Lewistown R-23 246,000 1996 ACRMU 89 77 72 67 62 54 50 52 42	9 77 72 67 62 54 50 52	89		1996	246,000		Lewistown
Lewistown R-32 327,000 2010 ACRH XX XX XX 100 81 50 79 70 0	X XX XX XX 100 81 50 79	XX	ACRH	2010	327,000	R-32	Lewistown
Lewistown R-33 205,000 2010 ACRH XX XX XX 100 82 50 80 71 (Lewistown
Lewistown R-34 78,000 2010 ACRH XX XX XX XX 100 80 50 78 70 0							Lewistown
Lewistown T-1 299,000 1993 ACRH 91 87 75 72 65 51 50 49 33	1 87 75 72 65 51 50 49	91	ACRH	1993	299,000	T-1	Lewistown
Lewistown T-5 88,200 1989 ACRH 82 81 72 74 63 50 50 48 31	2 81 72 74 63 50 50 48	82	ACRH			T-5	Lewistown
Lewistown T-7 183,706 1999 ACRMU 96 94 81 76 70 68 50 67 59	06 94 81 76 70 68 50 67	96	ACRMU	1999	183,706	T-7	Lewistown
Lewistown T-8 68,272 1999 ACRMU 92 92 66 57 62 54 50 52 42	92 92 66 57 62 54 50 52	92	ACRMU	1999	68,272	T-8	Lewistown
Lewistown T-11 36,781 2006 ACRMU 82 56 69 50 68 60 5	82 56 69 50 68		ACRMU	2006	36,781	T-11	Lewistown
Libby A-2 110,700 2002 ACAM 91 80 75 87 57 50 55 43	91 80 75 87 57 50 55		ACAM	2002	110,700	A-2	Libby
Libby A-3 107,040 2002 ACAH 90 87 71 79 65 50 62 50 5	90 87 71 79 65 50 62		ACAH	2002	107,040	A-3	Libby
Libby R-1 285,000 1999 ACRML 82 67 57 95 59 60 56 34	82 67 57 95 59 60 56		ACRML	1999	285,000	R-1	Libby
Libby R-2 90,000 1999 ACRML 82 68 57 89 62 60 60 40	82 68 57 89 62 60 60			1999	90,000	R-2	Libby
Libby T-2 82,600 1987 ACRH 74 62 56 62 43 50 40 20			ACRH	1987	82,600		Libby
Libby T-5 68,501 1999 ACRML 91 80 78 87 69 60 68 56 2	91 80 78 87 69 60 68		ACRML	1999	68,501	T-5	Libby
Lincoln A-11 54,954 2005 ACAM 80 81 90 50 87 74 0	80 81 90 50 87		ACAM	2005	54,954	A-11	Lincoln
Lincoln R-11 318,000 2005 ACRML 85 79 86 60 83 76 0			ACRML	2005	318,000	R-11	Lincoln
Lincoln T-11 62,575 2005 ACRML 84 75 88 60 85 77	84 75 88 60 85		ACRML	2005	62,575	T-11	Lincoln

SUMMARY OF PCI RATINGS														
		Section	Constr.	Family				ed PCI			Critical	Prec	licted 1	PCIs
Airport City	Section	Area	Year	Group	2000	2003	2006	2009	2012	2015	PCI	2016	2020	2025
(Branch Name)		(sq. feet)												
Livingston	A-11	183,600	2011	ACAH						83	50	79	63	48
Livingston	R-11	427,575	2011	ACRH						82	50	80	71	64
Livingston	T-5	89,775	2005	ACRH			85	85	83	74	50	72	66	60
Malta	A-1	95,800	2010	ACAM		XX	XX	XX	93	91	50	88	75	64
Malta	R-1	337,500	2010	ACRMU		XX	XX	XX	92	88	50	86	75	64
Malta	T-1	37,100	2010	ACRMU		XX	XX	XX	92	90	50	88	76	66
Miles City	R-12	560,100	2008	ACRH	XX		XX	98	84	76	50	74	68	61
Miles City	T-2A	63,000	1998	ACRMU	84		72	73	75	61	50	60	52	37
Miles City	T-3	43,750	2001	ACRH	XX		76	66	76	67	50	66	61	52
Miles City	T-6	50,400	1998	ACRMU	89		80	73	80	58	50	57	48	29
Plains	A-1	141,750	2006	ACAM				86	88	82	50	80	69	58
Plains	R-1	348,750		ACRML				89	84	75	60	74	68	52
Plains	T-1	47,775	2006	ACRML				88	88	85	60	83	76	68
Plentywood	A-11	73,348	2001	ACAM	XX	81	72	66	77	66	50	64	55	38
Plentywood	R-11	292,500		ACRMU	XX	89	83	75	76	68	50	66	59	49
Plentywood	T-11	141,080		ACRMU		88	85	74	81	73	50	71	63	54
Polson	A-11	199,475	1998	ACAM		76	66	56	61	47	50	44	27	0
Polson	R-11	315,000		ACRMU		74	66	62	53	56	50	55	45	24
Polson	T-11	170,450		ACRMU		75	73	64	47	54	50	52	42	17
Polson	T-12	32,925	1999	ACRMU		65	56	59	56	48	50 50	46	31	0
Poplar	A-1	78,380	2009	ACAM		05	50	57	98	95	50 50	91	75	64
Poplar	R-1	330,000	2009	ACRMU					99	92	50 50	88	73	63
Poplar	К-1 Т-1	58,500		ACRMU					97	95	50 50	92	80	68
Ronan	A-11	162,800		ACAM		87	85	79	68	74	50	72	63	50
Ronan	A-12	41,600	2000	ACAM		89	78	74	83	72	50 50	70	61	48
Ronan	R-11	360,000	2000	ACRMU		86	71	62	56	65	50 50	64	57	45
Ronan	T-11	192,675	2000	ACRMU		92	74	70	61	03 71	50 50	69	62	53
Roundup	A-1	36,400		ACAM	XX	83	75	66	79	62	50	60	50	31
Roundup	R-1	382,500		ACRML	XX	96	84	76	78	56	60	53	27	0
Roundup	T-1	36,720		ACRML	XX	95	84	79	77	63	60	61	42	6
Roundup	T-4	82,600	2002	ACRML	1111))	0-	1)	,,	93	60	90	79	72
Scobey	A-11	46,500		ACAM			88	53	69	66	50	64	55	38
Scobey	R-11	255,000		ACRML			80	70	78	72	60	71	62	39
Scobey	R-11 R-12	46,500		ACRML			82	73	81	69	60	67	56	25
Scobey	T-11	40,500		ACRML			82	61	67	69	60	67	56	25
Shelby	A-21	97,273	2003	ACAM			83	77	85	78	50	76	66	54
Shelby	R-21	375,000		ACRMU			83	80	89	70	50 50	68	61	52
Shelby	R-21 R-22	222,000		ACRMU			81	78	83	64	50 50	63	56	43
Shelby	К-22 Т-б	115,000		ACRMU	83		63	50	100	04 77	50 50	75	50 67	58
Shelby	T-17	71,330		ACRMU	05		05	50	100	84	50 50	82	72	62
Shelby	T-17 T-21	89,250		ACRMU			86	78	88	69	50 50	67	60	51
Shelby	T-21 T-22	64,400		ACRMU			78	69	88 77	54	50 50	52	42	17
Sidney	A-3A	55,000		ACAM	XX		XX	84	86	66	50	64	55	38
Sidney		80,156		PCAA	ЛЛ		лл 99	84 92	72	81	30 45	79	69	60
Sidney	A-11 A-13	114,774		ACAH			99	92 77	72 81	81 69	45 50	79 66	69 52	60 39
•		402,000		ACAH			91	73	81 81	69 71	50 50	00 70	52 65	
Sidney	R-11 R-12													58 63
Sidney	R-12	570,500		ACRH	WW		95 VV	72 VV	82	78	50 50	76	69 72	63
Sidney	T-4	338,250		ACRH	XX		XX	XX		84 80	50 50	81	72	65
Sidney	T-6	58,450		ACRH	0.2	0.1	02	70	70	89	50	86	74	67
Stanford	A-2	60,000		ACAM	93	81	82	70 70	78 75	68	50	66	57	42
Stanford	R-2	52,500		ACRML	93	86	88	79	75	69	60 ()	68	56	26
Stanford	R-3	262,500		ACRML	92	81	79	73	75	60	60 60	57	36	0
Stanford	T-2	13,100	1997	ACRML	97	90	87	86	90	71	60	70	60	35

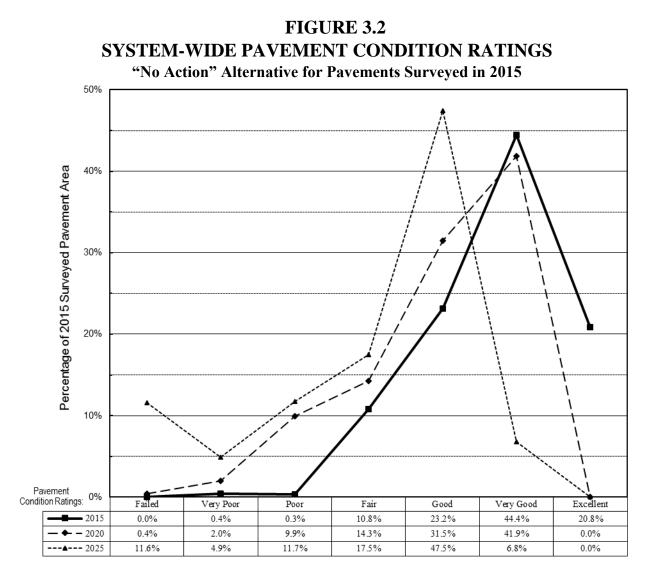
		Section	Constr.	Family	JI I	S	urveve	d PCI	s		Critical	Pred	licted l	PCIs
Airport City	Section	Area	Year	Group	2000	2003	2006		2012	2015	PCI	2016	2020	2025
(Branch Name)	~~~~~	(sq. feet)		r										
Stevensville	A-1	70.000	1991	STPA	79	70	65	70	80	51	55	49	35	0
Stevensville	A-2	90,425	1994	ACAM	93	80	70	64	82	40	50	37	16	0
Stevensville	R-1	228,000	1991	STPA	83	72	78	67	60	53	55	52	41	6
Stevensville	T-3	161,448	1994	ACRMU	96	87	89	78	93	52	50	50	38	11
Stevensville	T-5	71,505	2013	ACRMU						92	50	90	78	67
Superior	A-11	37,284	2004	ACAM	XX		92	74	68	69	50	67	58	44
Superior	R-11	270,979	2004	ACRML	XX		92	84	91	83	60	81	75	67
Superior	T-11	72,413	2004	ACRML	XX		89	80	81	78	60	77	71	60
Terry	A-11	52,234	2001	ACAM		94	75	76	76	74	50	72	63	50
Terry	R-11	322,500	2001	ACRML		95	83	79	75	82	60	80	74	65
Terry	T-11	23,463	2001	ACRML		92	71	73	66	78	60	77	71	60
Thompson Falls	A-2	52,490	1995	ACAM	93	88	77	67	67	63	50	61	51	33
Thompson Falls	R-1	252,000	1995	ACRMU	93	88	83	79	83	61	50	60	52	37
Thompson Falls	R-2	63,000	1995	ACRMU	88	82	67	64	64	52	50	50	38	11
Thompson Falls	T-4	66,300	1995	ACRMU	93	91	78	75	68	53	50	51	40	14
Thompson Falls	T-5	50,090	2000	ACRMU	99	97	90	81	86	76	50	74	66	57
Three Forks	A-1	63,800	2000	ACAM		91	82	70	81	73	50	71	62	49
Three Forks	R-1	246,000	2000	ACRMU		89	78	70	64	66	50	64	57	46
Three Forks	R-2	60,000	2000	ACRMU		93	87	80	77	71	50	69	62	52
Three Forks	T-2	74,150	2000	ACRMU		93	87	79	88	80	50	78	68	59
Three Forks	T-3	33,300	2000	ACRMU		90	80	65	63	67	50	65	58	48
Three Forks	T-4	70,344	2000	ACRMU		97	87	78	67	74	50	72	64	55
Townsend	A-1	105,000	2002	ACAM	XX	94	84	72	76	69	50	67	58	43
Townsend	R-1	240,000	2002	ACRML	XX	91	87	81	81	58	60	54	31	0
Townsend	T-1	34,700	2002	ACRML	XX	93	87	80	70	69	60	67	55	24
Turner	A-1	33,800	1995	ACAM	94	70	59	64	80	51	50	49	34	6
Turner	R-1	216,000	1995	ACRMU	84	79	75	72	78	59	50	58	49	32
Turner	T-3	20,000	1995	ACRMU	87	74	69	76	83	66	50	65	58	47
Twin Bridges	A-11	86,040	2014	ACAH							50	89	71	53
Twin Bridges	R-11	360,000	2014	ACRH							50	90	77	68
Twin Bridges	T-11	105,880	2014	ACRH							50	90	77	68
West Yellowstone	A-4	75,000	1980	ACPS	90		79	58	65	76	45	75	70	63
West Yellowstone	R-1	1,012,500	2003	ACPS	XX		92	78	82	83	45	82	76	70
West Yellowstone	R-2	247,500	2003	ACPS	XX		88	79	85	82	45	81	75	69
West Yellowstone	T-1	750,000	1980	ACPS	63		54	41	44	48	45	46	38	26
White Sulphur	A-11	78,951	2010	ACAM	XX	XX	XX		96	91	50	88	75	63
White Sulphur	R-11	367,500	2010	ACRML	XX	XX	XX		99	82	60	80	74	66
White Sulphur	R-12	105,000	2009	ACRML	XX	XX	XX		96	84	60	82	75	67
White Sulphur	T-12	26,915	2010	ACRML					100	95	60	92	80	72
Wolf Point	A-5	106,363	2010	ACAM	XX	XX	XX		98	90	50	87	75	63
Wolf Point	R-11	509,100	2010	ACRH					99	79	50	77	69	63
Wolf Point	T-4	28,200	2010	ACRMU	XX	XX	XX		93	80	50	78	69	59

TOTAL SURFACED AREA: 37,226,178 (sq. feet)

2015 SURVEY AREA: 32,783,687 (sq. feet) =

NOTES:

"XX" in PCI columns indicates previous PCI values have been voided to account for new construction.


No entry in PCI columns indicates no inspection of the pavement section for the given year.

Italics indicates the airport was not inspected for this report, as such the included information is suspect. If construction has taken place it will not be reflected in this report. Families and PCI predictions are assumed from pre-2015 pavements.

88%

3.3 SYSTEM-WIDE PAVEMENT CONDITIONS

PAVER uses current PCI values as a starting point on the pavement section's family curve, then continues down the family curve to project PCI's in the future. The constrained "best-fit" life cycle curves generated for each family are valid only to the age for which there is survey data, after which they assume a straight-line projection of the curve's slope (shown with dashed lines on the family curves). An Excel spreadsheet was used to summarize, organize, and enhance the presentation of PAVER-processed information into system-wide pavement condition ratings (Figure 3.2). The Pavement Condition Ratings shown are area-weighted to portray the percentage of 2015-surveyed Montana airport pavement area falling into each rating class. Square footages for each pavement section were accumulated into one of seven Pavement Condition Ratings, based on their inspected or predicted PCI values, and the rating scale shown in Figure 2.2, Step 8. The pavement area in each condition rating was then converted to percentages by dividing by the total 2015-surveyed area. The resulting distribution of Pavement Condition Ratings shown in Figure 3.2 projects a representative aging of all inspected airport pavements given continued maintenance practices, but no major rehabilitation or reconstruction.

The data in Table 3.1 and Figure 3.2 both show unequivocally that if reconstruction programs on Montana airports were suspended or discontinued, airport pavements would degrade to marginal serviceability within about 10 years. While there are many finer points to be gleaned from the graph of system-wide pavement condition ratings (Figure 3.2), splitting the pavement ratings into three groups (below fair, fair, and above fair) will help translate the extensive data set to more comprehensible insights.

Pavements rated as "Fair" are generally in a state of transition on two fronts: surface defects are beginning to be noticeable in both type and frequency, and the expense of reconstruction is becoming more economical than continued preventative maintenance. While surface distresses indicating deterioration of the pavement/base course system are visible, they are subtle enough to not have major effects on ride quality nor are they generating significant foreign object debris (FOD). Studies continue to indicate that reconstruction of "good" to "fair" quality asphalt surfacing is more economical than waiting until major distresses appear. While it may seem counterintuitive to reconstruct good-looking pavement, reconstruction before the gravel base deteriorates is much less expensive. The area of transitional pavements in the absence of reconstruction is projected to escalate from 11% to 14% to 18% in the years 2015, 2020, and 2025, respectively.

Those pavements rated above "Fair" are high-quality surfaces providing trouble-free use and relatively low maintenance costs. Currently, lower-cost preventative maintenance is the recommended course of action for 88% of the pavement area in the PCI database. Without investments in (re)construction, the area of pavement in this high service/low cost maintenance class drops to 73% in five years and 54% in 10 years.

Pavements assessed as below "Fair" condition provide increasing maintenance headaches, growing probabilities of damaging aircraft, decreasing ride quality, and escalating repair and reconstruction costs. "Below fair" pavements range from showing noticeable defects, all the way to near gravel surfaces. These serviceable, but low quality pavements grow from 1% (by area) of the database pavement area to 12% and 28% of the State-wide system pavements in 2020 and 2025, respectively.

This prediction is based on the assumption that current maintenance practices, aircraft activity, and loadings will continue, and that no new construction or major reconstruction will occur. In other words, they show what would happen if Montana airports discontinued pavement construction / reconstruction programs.

3.4 MAINTENANCE PRIORITIES

As an aid to pavement maintenance project prioritization three summary tables have been constructed using PCI projections from Table 3.1. These tables consider project prioritization from a system-wide approach, a community-based vantage, and a "maintain vs. reconstruct" option. These summary tables are meant only as an "early warning indicator" and should not be misconstrued as being an absolute authority. Where a rehabilitation or reconstruction project has been completed since the most recent PCI inspection, projections are shown with a strike out.

		By Pavemer			
2015-202	Λ	2020-202		2015-202	25
City	(sq. ft.)	City	(sq. ft.)	City	(sq. ft.)
West Yellowstone	750,000	Choteau	693,656	West Yellowstone	750,000
Polson	485,450	Laurel	561,360	Choteau	693,656
Lewistown	345,016	Big Timber	436,375	Laurel	561,360
Fort Benton	322,500	Ronan	401,600	Lewistown	528,722
Libby	286,241	Plentywood	365,848	Polson	485,450
Turner	216,000	Plains	348,750	Big Timber	475,975
Ennis	214,200	Jordan	347,038	Thompson Falls	433,790
Stevensville	161,448	Three Forks	343,100	Fort Benton	421,284
Thompson Falls	129,300	Hamilton	315,000	Ronan	401,600
Conrad	95,000	Thompson Falls	304,490	Scobey	388,640
Scobey	87,140	Scobey	301,500	Plentywood	365,848
Roundup	73,120	Dillon	290,475	Plains	348,750
Stanford	70,000	Shelby	222,000	Jordan	347,038
Glendive	69,000	Lewistown	183,706	Three Forks	343,100
Shelby	64,400	Livingston	183,600	Hamilton	315,000
Glasgow	58,500	Glendive	174,000	Dillon	290,475
Miles City	50,400	Sidney	169,774	Shelby	286,400
Baker	40,000	Baker	165,415	Libby	286,241
Big Timber	39,600	Glasgow	139,575	Glendive	243,000
Townsend	34,700	Superior	109,697	Turner	236,000
		Townsend	105,000	Ennis	214,200
		Cut Bank	104,013	Baker	205,415
		Fort Benton	98,784	Glasgow	198,075
		Stanford	73,100	Livingston	183,600
		Miles City	63,000	Sidney	169,774
		Deer Lodge	55,310	Stevensville	161,448
		Chinook	39,000	Stanford	143,100
		Circle	37,760	Townsend	139,700
		Havre	31,500	Miles City	113,400
		Harlem	28,174	Superior	109,697
		Terry	23,463	Cut Bank	104,013
		Turner	20,000	Conrad	95,000
				Roundup	73,120
				Deer Lodge	55,310
				Chinook	39,000
				Circle	37,760
				Havre	31,500
				Harlem	28,174
				Terry	23,463

TABLE 3.2 PAVEMENT PROJECTED TO GO SUBCRITICAL By Payament Area

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

Preserving the current investment in Montana's general aviation (GA) airport pavements may include prioritizing maintenance projects as in Table 3.2. Fog seals/seal coats, crack sealing, and thin-lift overlays *applied before the pavement crosses its critical PCI* are the most economical way of extending pavement life. By prioritizing projects by their square footage, it's possible to allocate State and Federal dollars to best extend the life of the greatest pavement area. Table 3.2 can be used to guide a *system-wide approach to economical pavement maintenance*.

When inconvenience and/or the future rehabilitation burden on local communities is of prime importance, maintenance can be prioritized by the percent of each airport's pavement forecasted to drop below the critical PCI. Table 3.3 is a ranking of airport communities that could be investing most economically in pavement maintenance. These communities can get their biggest "bang for the buck" if available maintenance dollars are spent before the critical PCI transition. Table 3.3 can help establish a *community-based emphasis to economical pavement maintenance*.

Tables 3.2 and 3.3 each provide three different time frames to consider in the project prioritization scenario, the first and second five-year period following inspection, and a ten-year overview. Please note that critical PCI transition tables do not give an indication of the type of maintenance that would be most beneficial, only the timing of the application. Inspection Summary Reports and Maintenance Reports are better indicators of the need for thin lift overlays, fog seals, crack sealing, localized patching, or other remediation.

Airports listed in Table 3.4 are candidates for reconstruction or repairs. Continued investments in maintaining these pavements produce diminishing returns, and are not the best investment of funds. The airports with greater than 75% of their pavements subcritical should be targeted for complete reconstruction, while those in the 25% range just need a section or two of pavement reconstructed.

The break-out of pavement ratings ("fair", "poor", etc.) can be used to determine the need for action. For example, since 100% of Benchmark's pavements have subcritical PCI's, and all are rated "very poor" to "failed", Benchmark Airport should be encouraged to reconstruct as soon as possible to avoid accelerating degradation, continued loss of base course structural strength, and rising reconstruction costs. Columbus is showing 100% subcritical pavements, but all above a PCI of 40. While Columbus's airport will remain serviceable with only localized "safety" repairs for quite a number of years, the monies invested would be better directed toward acquiring an AIP local match for a reconstruction project. Libby shows up in the partial reconstruct list, but a quick consideration of their remaining sections show they are all near-critical, bumping this airport into a recommended complete reconstruction. Anaconda and Havre have an overall high quality pavement with an isolated "historical" section in need of repairs. A significant number of airport operations combined with "poor", or "very poor" pavement conditions should boost an airport to the top of the reconstruction list.

These tables are provided only as an aid in the larger framework of GA airport funding allocation. Used judiciously, they can simplify and improve the airport improvement prioritization process.

2015-2020		2020-2025	2015-2025		
City		City	6	City	0
Polson	68%	Jordan	87%	Turner	87%
Fort Benton	54%	Scobey	78%	Townsend	37%
Libby	38%	Laurel	77%	Three Forks	63%
West Yellowstone	36%	Big Timber	73%	Thompson Falls	90%
Ennis	27%	Plentywood	72%	Terry	6%
Thompson Falls	27%	Plains	65%	Superior	29%
Stevensville	26%	Thompson Falls	63%	Stevensville	26%
Scobey	22%	Three Forks	63%	Stanford	35%
Lewistown	22%	Hamilton	61%	Choteau	100%
Conrad	21%	Ronan	53%	Scobey	100%
Stanford	17%	Superior	29%	Jordan	87%
Roundup	14%	Townsend	28%	Big Timber	80%
Townsend	9%	Livingston	26%	Laurel	77%
Miles City	7%	Dillon	22%	Plentywood	72%
Big Timber	7%	Shelby	21%	Fort Benton	70%
Shelby	6%	Stanford	18%	Polson	68%
Glendive	6%	Baker	18%	Plains	65%
Glasgow	5%	Fort Benton	16%	Hamilton	61%
Baker	4%	Glendive	15%	Ronan	53%
		Cut Bank	15%	Libby	38%
		Glasgow	12%	Lewistown	34%
		Lewistown	12%	Shelby	28%
		Circle	11%	Ennis	27%
		Sidney	10%	Livingston	26%
		Deer Lodge	10%	Baker	22%
		Chinook	9%	Dillon	22%
		Miles City	9%	Glendive	21%
		Turner	7%	Conrad	21%
		Harlem	7%	Glasgow	17%
		Terry	6%	Miles City	16%
		Havre	4%	Cut Bank	15%
				Roundup	14%
				Circle	11%
				Sidney	10%
				Deer Lodge	10%
				Chinook	9%
				Harlem	7%
				Havre	4%

TABLE 3.3PAVEMENT PROJECTED TO GO SUBCRITICALBy % of Each Airport's Pavement Area

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

	Airport	Subcritical	Failed	Very Poor	Poor	Fair
	City	0-55	0-10	11-25	26-40	41-critical PC
uct e	Benchmark	100%	9%	91%		
onstr priat	Forsyth	100%	33%		54%	13%
Complete Reconstruct when Appropriate	Gardiner	100%			100%	
lete] n Af	Columbus	100%				100%
whe	Conrad	79%				79%
Ŭ	Roundup	71%				71%
	YY 11.	2004	2007			
5 A	Hamilton	28%	28%		1 5 0 /	1000
Partial Reconstruct when Appropriate	Stevensville	63%			15%	48%
cons	Libby	62%			11%	50%
l Re Api	Stanford	65%				65%
urtial hen	Townsend	63%				63%
\mathbf{P}_{a}	Polson	32%				32%
	Lewistown	25%				25%
r /	Havre	13%			13%	
epai uct	Anaconda	13%			5%	8%
Localized Repair / Reconstruct	Glendive	17%				17%
aliza Recc	Turner	13%				13%
Loc	Ennis	11%				11%

TABLE 3.4% OF EACH AIRPORT'S PAVEMENT WITH 2016 SUBCRITICAL PCI

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

3.5 MAINTENANCE PRACTICES

All of the results obtained from this analysis are affected by maintenance practices. In general, improved maintenance raises all points of the curve, produces a "bump up" in quality, and/or extends the "flat" portion of the pavement life cycle, providing a longer usable pavement life before dropping off at the critical condition. Figure 3.3 revisits the pavement life cycle curve from Figure 2.12 showing the benefits of improved maintenance practices. While occasional maintenance extends pavement life, regular preventative maintenance clearly extends the usable life of pavement well beyond its non-maintained expected usable life. Most pavements around the State are already benefitting from recent increases in federal airport funding and improved maintenance policies. Families have more data scatter than previous years, due in large part to new maintenance policies mixed with the old data. Future analyses may be able to quantify these effects by studying maintenance practices more closely along with the PCI evaluations, and redefining pavement families to account for maintenance practices.

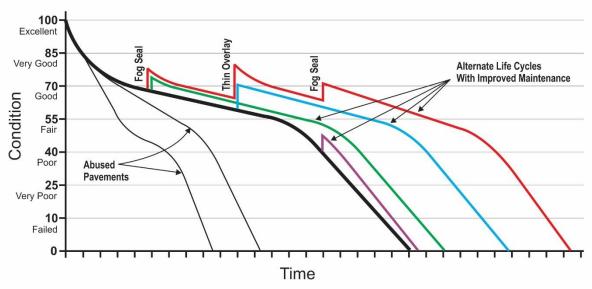
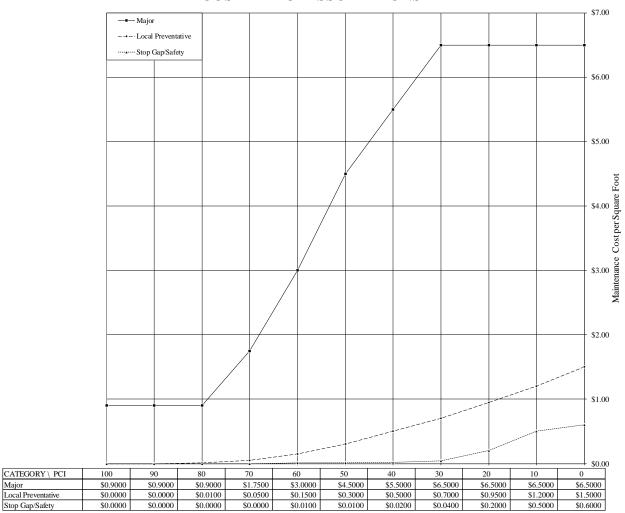


FIGURE 3.3 EXTENDED PAVEMENT LIFE CYCLE

3.6 MAINTENANCE AND REHABILITATION PLANNING

PAVER for windows consolidates the Maintenance & Rehabilitation (M&R) planning into a single work plan with a number of application, modeling, and reporting options. The scope of policy application is set by a sort routine, just like that used to set families. The sort can be structured to report on all database members, currently maintained pavements, one airport, or even a single section of an airport pavement. Once the scope of the M&R plan has been defined a choice of three modeling routines is available: Minimum Condition Report, Consequence Model Report, and Limit to Budget Report. These three reports take dramatically different approaches to modeling pavement aging and its effect on budgeting for optimum pavement quality. The final option of establishing an M&R routine is to set-up the table(s) specific to each model. These range from target minimum PCI's for future years, simple cost by condition tables, to elaborate webs of costs and consequences of specific remedies to be applied to specific grades of distress.


The first step in establishing a work plan is to determine the scope of application. This scope may be restricted for such reasons as reducing computing time, or exploring optimum repair strategy at a single airport. Within the Selection Criteria option of the work plan, the user may select "All Items" to get past and present pavement sections stored in the database, or choose "Build Selection" to construct a smaller group. To choose currently maintained pavements filter using "Rank = O," i.e. select all pavements that have been classified as "current" (This is the same as previous PAVER versions' "Network Report"). Airports can be addressed individually by setting "Zone" equal to the airport's four-character code **and** setting "Rank = O." Smaller selections are filtered out using "BranchID" or "SectionID."

The **Minimum Condition Report** is the simplest of the modeling routines. This report allows the user to set a single PCI minimum for each future year, then calculates the cost to repair any pavement that falls below these predetermined minimums. Costs of improvements increase with decreasing PCI and chosen to be typical PAVER airfield values (see Figure 3.4). These PCI-based repair cost estimates are a systematic reflection of increasing repair costs for decreasing pavement quality. The minimum allowable PCI can be set for each year in the future to phase in repairs acceptable to available funding. For example, budget constraints might only allow raising the system-wide minimum PCI to 35 the first year, but this could then be raised to 41, 46, and 50 in successive years. Major M&R budgeting is predicted reasonably well for any number of years with little change in the validity of the results.

The **Consequence Model Report** treats extrapolated distress quantities with specific remedies (see Table 3.5) to remediate pavement distresses and increase the overall section PCI. For a preset cost (see Table 3.6) the pavement distress associated with the treatment replaces the original more severe distress in PCI calculations (see Table 3.7). For example, crack sealing AC pavements costs about two dollars per linear foot and fills medium- and high-severity cracks, reducing them to low-severity cracks. Costs are estimated for a stand-alone FAA-assisted project, and may be higher than a contractor's quote. If an airport owner paid for recommended repairs to each pavement distress on their pavement and had their airport inspected immediately after completion of the repairs, the airport's new PCI and the bill for improvements would be approximately that predicted by the Consequence Model Report. The Consequence Model Report uses only localized

Major

repair options and makes no attempt to increase quantity or severity of distresses to account for the natural aging process nor to project distresses that have not already been recorded during an inspection. This report is designed to provide projections of the localized repair costs and consequences only when repairs are applied within a year of the airport inspection.

FIGURE 3.4 **COST BY PCI ASSUMPTIONS**

The **Limit to Budget Report** optimizes pavement quality using a set budget cap and four targeted maintenance policies: Localized Safety, Localized Preventative, Global, and Major Reconstruction. Localized Safety treatments attempt to keep an airport pavement safe for operation using only local treatments while waiting for funds to replace the entire pavement section. For example, a high severity depression could be patched to eliminate hydroplaning potential, but underlying subgrade problems could still necessitate eventual reconstruction. Local Preventative treatments are applied to above-critical-PCI pavements to prolong the pavement life

and reduce the effect of nonstructural and minor structural local defects. Crack sealing is a common Local Preventative repair that will stop moisture penetration into the subgrade and preserve subgrade integrity and extend pavement life. Global Preventative measures are applied to above-critical-PCI pavements when defects affect the whole surface. For example, raveling can be slowed significantly by applying a surface seal, rebinding the aggregate into a high quality surface at a fraction of the cost of a new surface. Major M&R is a total reconstruction of a pavement section applied when that section is below the critical PCI for its family curve, or if alligator cracking, rutting, and the like, indicate structural failure even above the critical PCI. The "Major Under-Critical" case of Major M&R assumes that the critical PCI was chosen such that reconstruction is a more economical option than continued maintenance once a section has passed below its critical PCI. While it is very rare, structural failure of parts of a section (like a culvert crossing of a runway settling) may produce an unusable pavement with a PCI rating above critical. This "Major Above-Critical" special case can only be treated effectively by reestablishing a sound foundation for the surface layer, hence its inclusion in the Major M&R policy.

The Limited to Budget Report is a hybrid report which makes the best use of detailed inspection data for short-range predictions then switches to a more general, empirically verified long-range scheme. The first year predictions are based on a Consequence Model Report plus Global and Major repair options, while successive years use the same costs (see Table 3.6) as the Minimum Condition Report. First year predictions of costs for local maintenance and conditions are determined from Localized Safety and Localized Preventative Maintenance Policies (Table 3.5) and their associated cost and consequence tables (Tables 3.6 and 3.7). In succeeding years, both Localized Safety and Preventative Maintenance costs are determined from the Cost by PCI table illustrated in Figure 3.4. Global M&R always takes its costs and consequences from user-defined values irrespective of pavement PCI's (see Table 3.8). In other words, fog seals/seal coats will have the same cost and useful life regardless of the quality of pavement they're applied to. Major Rehabilitation costs for all projection years are used from the Cost by PCI table in Figure 3.4. Localized Preventive Maintenance Policies are applied only when the annual budget is limited. Localized policies are only applied while waiting for a section's "turn" in the funding cycle.

LOCALIZED	SAFETY	OR "STOP-GAP"	LOCALIZED PREVENTATIVE		
Description	Severity	Treatment	Description	Severity	Treatment
Alligator Cracking	Н	Patching-AC Deep	Alligator Cracking	M or H	Patching–AC Deep
Block Cracking	Н	Crack Sealing – AC	Block Cracking	M or H	Crack Sealing – AC
Depression	Н	Patching – AC Deep	Depression	M or H	Patching-AC Deep
Jt. Ref. Cracking	Н	Crack Sealing – AC	Jt. Ref. Cracking	M or H	Crack Sealing – AC
L & T Cracking	Н	Crack Sealing – AC	L & T Cracking	M or H	Crack Sealing – AC
Patching	Н	Patching – AC Deep	Oil Spillage		Patching - AC Shallow
Weathering	Н	Patching – AC Shallow	Patching	M or H	Patching-AC Deep
Raveling	Н	Patching – AC Shallow	Rutting	M or H	Patching-AC Deep
Rutting	Н	Patching – AC Deep	Shoving	M or H	Patching - AC Shallow
Shoving	Н	Patching – AC Shallow	Slippage Cracking		Patching - AC Shallow
Slippage Cracking		Patching – AC Shallow	Swelling	M or H	Patching-AC Deep
Swelling	Н	Patching – AC Deep	Blow-Up	L	Patching – PCC Full Depth
Blow-Up	M or H	Patching – PCC Full Depth	Blow-Up	M or H	Slab Replacement – PCC
Corner Break	Н	Patching – PCC Full Depth	Corner Break	Н	Slab Replacement – PCC
Linear Cracking	Н	Crack Sealing – PCC	Corner Break	Μ	Patching – PCC Partial Depth
Durability Cracking	Н	Slab Replacement – PCC	Linear Cracking	M or H	Crack Sealing – PCC
Small Patch	Н	Patching - PCC Partial Depth	Durability Cracking	Н	Crack Sealing – PCC
Large Patch/ Utility	Н	Patching – PCC Full Depth	Durability Cracking	Μ	Patching – PCC Full Depth
Scaling	Н	Slab Replacement – PCC	Small Patch	M or H	Patching – PCC Full Depth
Shattered Slab	Н	Slab Replacement - PCC	Large Patch/ Utility	Н	Slab Replacement – PCC
Joint Spalling	Н	Patching – PCC Partial Depth	Large Patch/ Utility	Μ	Patching – PCC Full Depth
Corner Spalling	Н	Patching - PCC Partial Depth	Scaling	M or H	Slab Replacement – PCC
			Settlement	Н	Slab Replacement – PCC
			Shattered Slab	M or H	Slab Replacement – PCC
			Joint Spalling	M or H	Patching – PCC Partial Depth
			Corner Spalling	M or H	Patching – PCC Partial Depth

TABLE 3.5 FIRST YEAR LOCALIZED MAINTENANCE POLICIES

TABLE 3.6FIRST YEAR LOCALIZED MAINTENANCE COSTS

Repair Description	Cost
Crack Sealing - AC	\$2/ft
Patching - AC Deep	\$44/sf
Patching - AC Shallow	\$18/sf
Crack Sealing - PCC	\$2/ft
Patching - POC Full Depth	\$80/sf
Patching - POC Partial Depth	\$100/sf
Slab Replacement - PCC	\$80/sf

CRACK SEALING - AC							
Distress Description	Severity	New Distress Description	New Severity				
Block Cracking	М	Block Cracking	L				
Block Cracking	Н	Block Cracking	L				
Jt. Ref. Cracking	Μ	Jt. Ref. Cracking	L				
Jt. Ref. Cracking	Н	Jt. Ref. Cracking	L				
L & T Cracking	Μ	L & T Cracking	L				
L & T Cracking	Н	L & T Cracking	L				

TABLE 3.7EXAMPLE FIRST YEAR REPAIR CONSEQUENCES

TABLE 3.8GLOBAL MAINTENANCE COSTS AND CONSEQUENCES

Repair Description	Cost	Application Interval	Years for PCI to Return to Pre-application Value
Overlay - AC Thin (Global)	\$1.95/sf	10	6
Surface Seal – Seal Coat	\$0.28/sf	5	2

Money is first allocated to sub-critical PCI sections for "stop gap" Localized Safety treatments. If it's determined later that funding is available for major reconstruction of a section, then its stop-gap funds are redistributed. The second fiscal priority is to prolong the life of above-critical-PCI pavements with Local, then Global Preventative treatments. Local and Global Preventative funds are the example \$1 invested near the critical PCI as shown in Figure 2.12 to avoid the necessity of spending \$4 to \$5 later. This investment in pavements before rapid deterioration produces an extended pavement life cycle as shown in Figure 3.2 and optimizes pavement quality per dollar spent. Major Under Critical and Major Above Critical repair treatments are prioritized for replacement by PCI and primary use as shown in Table 3.9.

TABLE 3.9EFFECTIVE MAJOR M&R PRIORITIES

M&R Policy	PCI Range	Runways	Taxiways	Aprons
Major Above Critical	100 - 70	2	4	6
-	70 - Critical	1	3	5
Major Under Critical	Critical - 40	1	3	5
	40 - 0	2	4	6

3.7 OTHER PAVER REPORTS (Available, but not included in this System Plan Update)

PAVER provides several reporting options that are not included in this report since they do not directly address the intent of this project. They are briefly discussed here to provide insight on the potential advantages of implementing the pavement management system.

The **Inspection Schedule Report** allows the user to plan which pavements need to be inspected based on their current and expected conditions. This allows the user to time inspections for maximum effectiveness in identifying pavements in critical need of maintenance and/or reconstruction.

The **Condition History Report** allows the user to plot a specific pavement's history of PCI values through all of its existing PCI inspections. This option gives the user an at-a-glance assessment of an individual airport pavement's performance over time. This is available in graphical and tabular form under the heading "Condition Table" as part of the M&R Report, but was not included in this text. A 1-, 5-, and 10-year sampling are included in Table 3.1.

The MS Excel spreadsheets included in this report as Tables 2.4 and 3.1 can also be manipulated to perform many of the tasks possible in the PAVER database. Depending on the computer equipment available and the expertise of the user, this spreadsheet format may be more convenient for some types of analysis.

PAVER provides several other analysis routines to help the user decide among various maintenance and repair alternatives. These analysis and reporting options provide decision making information that may be useful for evaluating system-wide programs or for individual airport planning.

3.8 CONTINUED MOCROPAVER IMPLEMENTATION

In addition to this report, the product for this 2015 Update to the Montana Aviation System Plan includes an up-to-date copy of the pavement database, and a current licensed copy of the PAVER software. This will allow the MDT Aeronautics staff to use the software and database in their planning and budgeting efforts. Inspection reports and airport maps will be provided to MDT in a pdf-format for inclusion on their web site where they will be available to the public. Excerpts of the information contained in the reports are provided directly to airport managers, so they have a current indication of their pavement conditions and needs.

The continued success of this pavement management system is dependent on keeping the database up to date. PCI surveys, conducted on a regular three-year cycle beginning in 1988, have collected pavement condition information for 65 of Montana's airports. Continued implementation of the current family models need not include surveys of each airport each time an update is completed. Instead, the frequency of inspections at each airport should be based on the likelihood of significant change since the last inspection. If previous survey results indicate an approaching PCI plateau, an airport could be skipped for a phase or two, allowing additional airports to be surveyed on available funds. Conversely, survey frequency should increase as conditions approach the critical PCI. The frequency of inspections at any given airport may also be based on the importance of that airport to the system, or the sponsor's needs for information to assess their maintenance and construction programs.

The PCI survey program depends on consistent inspection information to provide accurate and reliable estimates of condition and predictions of future condition. This is best achieved through strict compliance with the requirements of FAA Advisory Circular 150/5380-7 with the modifications from the Northwest Mountain Region handout "Pavement Condition Survey Program", since PAVER is designed to work with these procedures. Personnel selected to conduct the PCI visual inspections should be well-trained, and experienced in the procedures outlined in these documents, to ensure the needed quality and consistency of data.

The program also benefits from close attention to detail in documenting the inspection and analysis processes. The PAVER database, if properly maintained, preserves much of this data. FAA Forms 5320-1 also provide much of the needed information about pavement design criteria, and the definitions of sections and sample units. It is very important that these forms and the information they contain for Montana airports continue to be updated as changes occur, and that the information is updated in the PAVER database. Coordination with the FAA, airport sponsors, and engineers working on airport improvement projects is essential in maintaining up-to-date records of the pavement systems in the database. Additional information, such as the spreadsheet summaries provided in this report should be carefully updated or noted as obsolete when database updates occur. Additionally, the PAVER database may be compatible with other airport information management systems, providing a powerful combination of information in convenient formats. Because of the architecture of the database, it can be coordinated with other programs. Such efforts may require direct coordination with the developers of the program at the United States Army Corps of Engineers Research Labs.

Predictions developed for this update use a slowly evolving set of families. As noted earlier in this chapter, family analysis curves can be re-defined in any way the user desires. Results obtained in this update suggest that maintenance practices actually occurring on Montana's airports may play an increasingly important role in slowing pavement aging. As a result, future updates to the plan may be improved by increased attention to actual maintenance on each pavement section, and revised family analysis curves that account for differences in maintenance. Changes to the family analysis curves should not be undertaken without careful analysis however, since consistency of results is of great importance to the success of the program. Five rounds of inspections under a new maintenance regimen and increased federal investment in Montana's airport infrastructure is getting close to providing enough data to split families into "well-maintained" and "poorly-maintained" groups. Most of the current families do not have enough survey points to divide without compromising the statistical validity of the data, especially on the aged end of the graph. In fact, should excellent maintenance continue, the database will not add any "below critical PCI" information; and while this will be good news to airport users, it adds more uncertainty to end-of-cycle PCI predictions.

Even with Montana's current wealth of data (using all inspections from 1988-2015; roughly 3000 PCI determinations from 40,000 recorded distresses) we are probably limited to 5-15 families. It is a very fine line between having enough types of families to fairly accurately model the different

pavements in the State, and having too many families to be accurately defined by the existing data. To be "well-defined" a family must have inspections of representative pavements at a good range of ages. If pavements are less representative of the group, or data is lacking for a cluster of ages (especially the downward curve after critical PCI) a family can only be constructed with a good deal of engineering judgement, and as such, it may represent that judgement, more than the empirical reality. The challenge becomes choosing which few of the numerous common-sense delimiters create families with good statistical properties.

As this pavement management system evolves, it may be appropriate to slowly phase in one or more new criteria (maintenance practices, freeze-thaw cycling, insolation, etc.) in place of, or in addition to the current five criteria (pavement type, functional use, design strength, operations counts, seasonal use) while trying to maintain approximately 10 families. For example, operations counts were phased into the most data-rich family in 2003 as a way to split an overly large set (ACRM became ACRML and ACRMU). Functional usage was dropped from the light-duty design load pavements in 2006 creating two families where formerly there were four. There were not nearly enough "under 12,500 lb. design load" or "surface treatments" remaining in the State to warrant four families, so ACAL and ACRL were combined into ACPL, while STAA and STRA were lumped into STPA. There are no families with an excess of data, ripe for dividing into meaningful subsets. The families STPA and ACPL represent very few active pavements, but enough to keep around for a few more iterations. In short, the set of families are currently functioning very well with slow evolution.

Appendix A Figure A.1 is included to illustrate that the current set of families is fairly robust, although it also hints at how the high-age end of the graphs (with the least data) can show significant variation from year to year. Note how slight raising of the 0-5 year portions of each graph reflect a number of reconstructed airports and improving early preventative maintenance.

Finally, the Montana airport pavement database and associated software systems can only provide benefits if they are actively used to help manage Montana's airport pavements. The entire purpose of the program is to provide information to decision makers. Whether it is used by the MDT Aeronautics Division, the Federal Aviation Administration, airport sponsors, planners, or engineers, the system can be used to provide meaningful information about pavement conditions, performance, policies, and budget allocations.

CHAPTER 4 AIRPORT REPORT SUMMARIES

CHAPTER 4 AIRPORT REPORT SUMMARIES

4.1 INTRODUCTION

This chapter contains the airport inspection report summaries, maintenance reports, inspection photos, and updated FAA forms 5320-1 (Airport Layout Maps with Pavement Strength Survey / Pavement Condition Survey) for each airport surveyed in the 2015 Update to the Montana Aviation System Plan.

Airports are arranged alphabetically by the name of the city in which they are located and maps are folded so that the city name sticks out to provide a convenient locating tab. The city name also appears in large, bold print at the top left corner of each inspection report and maintenance report page. Inspection and summary data is grouped by section and samples which are called out on the included map. The first character of a section name is coded to its primary use, so A-3 will be an apron, R-1 a runway, and T-5A a taxiway. These section designations are in large, bold print at the top right corner of each inspection report page.

4.2 INSPECTION REPORT SUMMARIES

The Airport Inspection Report Summaries are presented for each airport using PAVER's "Inspection Report" to compile the 2015 PCI survey project data and perform calculations, then refined and reformatted using MS Access. A variety of descriptive information about the section is listed immediately below the header on the left three quarters of the page, while the database classification codes for the section are on the right margin. The Inspections section presents first and foremost the section PCI in a medium-sized, bold print, followed by the sampling rate and date of inspection. The specific, recorded distresses for a number of samples completes the documentation of the field surveys. The Extrapolated Distress Quantities section approximates the distresses present in the entire section from those measured in the sampled areas, and shows values for intermediate steps in the PCI calculation routine. The Distresses are listed in order of decreasing "deducts," so the distresses listed first are those causing most damage to the pavement. Maintenance concerns should be prioritized to address these distresses in the order they appear. The classification by distress mechanism may point to the most significant force in pavement deterioration. Finally, no entry in a given section of an inspection report simply means there were no measurable distresses in the sample inspected.

4.3 MAINTENANCE REPORT SUMMARIES

The Maintenance Report Summaries are presented for each airport using PAVER's Budget Constrained M&R Report with Unlimited Budget to project the 2015 survey data into a fifteen year budgeting projection. The results are refined and reformatted using MS Access. Fifteen Year Projections estimate an annual budget necessary to keep all airport pavements above their critical PCI's, as well as detailing a time line of suggested repairs. The section designation requiring work and an abbreviated treatment suggestion are located along the left edge of the page, with total cost and resulting change in PCI along the right page edge. The detailed breakdown of cost by treatment is listed in the center. A section is not called out in parts of the maintenance report if it is in satisfactory condition and needs no repairs.

4.4 INSPECTION PHOTOS

One or more pages of inspection photos are provided for each airport to illustrate specific pavement distresses identified in the 2015 survey, or to show the overall appearance of pavement sections. We have increased the number and size of the photos, typically providing both an overview and close-up detail of each pavement section. This "virtual tour" of Montana's airports will provide the report reader with a clearer understanding of the conditions that contributed to our evaluations.

While inspections are completed for typical representative sample areas, photos often strive to document the worst pavement distresses of a section - *they often show the exception, not the rule.* These photos document the extremes of our evaluation and instruct airport managers and others charged with maintaining Montana's pavements what to look for on an airport pavement. Copies of these photos will be provided for inclusion on MDT's web site.

4.5 FAA FORM 5320-1

The FAA form 5320-1 for each airport is a standard form that describes the components of each pavement section, and identifies pavement improvement dates. The form has been adapted to also show sample units defined for each pavement section. This allows the field-inspected sample units to be precisely located on the airport, and allows consistent sampling from PCI project to project.

4.6 REPORTS

The information presented in this chapter for individual airports is also provided directly to each airport's manager, for their use in planning improvements to their airport pavements.

Some pavement sections were not included in the current survey, either because they were brand new and assumed to be in "perfect" condition, or because they are abandoned, not maintained, not part of the federally financed system, T-hangar taxiways, or too small to significantly affect the program. A few sections were left out of the 2015 scope of work since they have deteriorated well below the critical PCI, so no significant information could be gained from their inspection. These omitted pavement sections are listed in Table A.5 in the Appendix A along with reasons for omission.

Individual airport reports for 2015 surveyed airports follow:

APPENDIX A

Distress Name	Description	
Alligator Cracking	Load related - a major distress	
Bleeding	Excess asphalt cement on surface reduces traction - design or construction defect	
Block Cracking	Rectangular, interconnected cracks - related to climate, age, durability	
Corrugation	Closely spaced ridges & valleys, perpendicular to traffic, caused by braking action & unstable pavement base.	
Depression	Low spots by settlement or load, cause roughness and future deterioration	
Jet Blast	Asphalt has been burned by jet engines	
Joint Reflection	Caused by movement of Portland cement under an asphalt overlay - will cause future problems	
Longitudinal & Transverse Cracking (L & T Crack)	Random cracks, usually not load related, but due to poor construction joints or climate/age/durability	
Oil Spillage	Usually on aprons - softens asphalt and speeds aging process	
Patching	A defect no matter how well-done	
Polished Aggregate	Aggregate is worn smooth - poor traction	
Raveling	Loss of aggregate from the paved surface	
Rutting	Surface depression in wheel path - almost always from snowplows and sand trucks	
Shoving from PCC	Asphalt is crushed from adjacent PCC movement	
Slippage Cracking	Minor cracks - caused by braking or turning wheels	
Swell	Upward bulge - usually from frost heave or expansive clays below pavement	
Weathering	Loss of asphalt binder and/or fines	

TABLE A.1ASPHALT PAVEMENT DISTRESSES

TABLE A.2
PORTLAND CEMENT PAVEMENT DISTRESSES

Distress Name	Description
Blow-Up	Slabs expand in hot weather and crush each other
Corner Break	Poor support at corner of slab, combined with loading
Longitudinal/Transverse/ Diagonal Cracks	Cracks extend clear across a slab dividing it into two or three pieces
"D" Crack	Durability Cracks - climate related
Joint Seal Damage	Poor or missing crack sealant - lets water and incompressible materials between slabs - can cause blow-up, pumping, spalling
Patching < 5 ft ²	A defect no matter how well-done
Patching / Utility Cuts	A defect no matter how well-done
Popouts	Small piece of pavement dislodged from surface - freeze / thaw or poor aggregate
Pumping	Subgrade materials are liquefied and then "pumped" up through cracks when loaded
Scaling/Map Cracking/Crazing	Hairline cracks in surface - usually caused by over-finishing the surface, or by climate factors
Settlement Fault	Slabs move up/down at joint with respect to each other
Shattered Slab	Cracked into four or more pieces
Shrinkage Crack	Short, fine surface cracks, usually a construction defect
Spalling - Joints	Edges broken along slab joints, usually near surface only - due to incompressible materials in joints
Spalling - corners	Breaks in slab at joint corners, usually near surface only - due to incompressible materials in joints
Alkali Silica Reaction	Chemical reaction causing map cracking and popouts from aggregate expansion. Colored gel or staining at the cracks

TABLE A.3ASPHALT PAVEMENT DISTRESSES BY CAUSES

Load	Climate/Durability	Other
Alligator Cracking	Block Cracking	Bleeding
Rutting	Joint Reflection Cracking	Corrugation
	Longitudinal/Transverse Cracking	Depression
	Patching	Jet Blast
	Weather	Oil Spillage
	Raveling	Polished Aggregate
		Shoving
		Slippage Cracking
		Swelling
		Mechanical Raveling

TABLE A.4CONCRETE PAVEMENT DISTRESSES BY CAUSES

Load	Climate/Durability	Other
Corner Break	Blow-Up	Small Patch
Linear Cracking	Durability Cracking	Large Patch/Utility
Shattered Slab	Joint Seal Damage	Popouts
	_	Pumping
		Scaling/Crazing
		Faulting
		Shrinkage Cracking
		Joint Spalling
		Corner Spalling
		Alkali Silica Reactivity

Airport	Omitted Section	Reason for Omission	
Anaconda	Т-4	Sub-critical Area < 30,000 sf	
	T-1A, T-2, T-5	Alea < 50,000 SI	
Baker	A-3A, A-6, A-7, A-9	Area < 30,000 sf	
Benchmark	All	Sub-critical	
Big Sandy	All	Per FAA direction	
Big Timber	T-1	Sub-critical	
	A-2, T-3	Area < 30,000 sf	
Broadus			
Chester	A-5	Sub-critical	
	T-2, T-3, T-4	Area < 30,000 sf	
Chinook	A-1A	Sub-critical	
Choteau	R-12	Area < 30,000 sf	
Circle	A-1, T-2	Area < 30,000 sf	
Colstrip	T-2	Area < 30,000 sf	
Columbus	T-2	Area < 30,000 sf	
Conrad			
Culbertson	A-2, T-2	Area < 30,000 sf	
Cut Bank	A-1, R-1, T-1,T-2	Per FAA direction	
	T-6	Area < 30,000 sf	
Deer Lodge	A-4, T-1B	Area < 30,000 sf	
Dillon	T-2, T-4	Area < 30,000 sf	
Ekalaka	T-2, T-11	Area < 30,000 sf	

TABLE A.5SECTIONS OMITTED FROM 2015 PCI SURVEY

Airport	Omitted Section	Reason for Omission
Ennis	A-1	Sub-critical
Eureka	T-2 T-4, T-5	Sub-critical Area < 30,000 sf
Forsyth	All	Per FAA direction
Fort Benton	All	Per FAA direction
Gardiner	All	Sub-critical
Glasgow	A-4, A-6, T-4, T-7, T-9	Sub-critical
	A-3, T-10, T-11, T-12	Area < 30,000 sf
Glendive	All	Per FAA direction
Hamilton	A-1, A-2 , T-2, T-3	Sub-critical
Hardin	All	Per FAA direction
Harlem	R-12	Area < 30,000 sf
Harlowton	All	Per FAA direction
Havre	A-3, A-4, A-5 , R-21, T-2, T-3	Sub-critical
	T-3	Area < 30,000 sf
Jordan	T-12	Area < 30,000 sf
Laurel	T-1, T-2	Sub-critical
Lewistown	A-1, A-3A, T-4, T-9, R-1	Sub-critical
	T-10	Area < 30,000 sf
Libby	A-4	Sub-critical
	A-1, A-5, T-6	Area < 30,000 sf
Lincoln	A-2	Area < 30,000 sf

TABLE A.5 (contd.)SECTIONS OMITTED FROM 2015 PCI SURVEY

	1 20.000 6
Livingston T-11	Area < 30,000 sf
Malta A-3, A-4, T-2	Area < 30,000 sf
Miles City A-2, A-3, A-3A, A-4, A-5, R-12 , R-21	Per FAA direction
T-1B	Sub-critical
T-3B	Area < 30,000 sf
Plains T-2	Area < 30,000 sf
Plentywood	
Polson T-14	Area < 30,000 sf
Poplar	
Ronan T-5	Area < 30,000 sf
Roundup A-2, T-3	Area < 30,000 sf
Scobey A-12, T-12, T-13	Area < 30,000 sf
Shelby A-22, T-7	Area < 30,000 sf
Sidney T-3, T-4	Sub-critical
A-12, A-14, A-15, T-2	Area < 30,000 sf
Stanford	
Stevensville T-1, T-4	Area < 30,000 sf
Superior A-12, A-13	Area < 30,000 sf
Terry	
Thompson Falls A-1, T-6	Area < 30,000 sf
Three Forks A-2	Sub-critical
T-1	Area < 30,000 sf

TABLE A.5 (contd.) SECTIONS OMITTED FROM 2015 PCI SURVEY

Airport	Omitted Section	Reason for Omission
Townsend	T-2	Area < 30,000 sf
Turner	T-2	Area < 30,000 sf
Twin Bridges	All	Per FAA direction
West Yellowstone	A-1, A-2, A-3, T-1 A-5, T-2	Sub-critical Area < 30,000 sf
White Sulphur Springs	T-1 T-2, T-11	Sub-critical Area < 30,000 sf
Wolf Point	T-11, T-12, T-13	Area < 30,000 sf

TABLE A.5 (contd.)SECTIONS OMITTED FROM 2015 PCI SURVEY

TABLE A.6AC – FIRST YEAR REPAIR CONSEQUENCES

CRACK SEALING

Distress / Description	Severity	New Distress / Description	New Severity
Block Cracking	Н	Block Cracking	L
Block Cracking	Μ	Block Cracking	L
Jt. Ref. Cracking	Н	Jt. Ref. Cracking	L
Jt. Ref. Cracking	Μ	Jt. Ref. Cracking	L
L & T Cracking	Н	L & T Cracking	L
L & T Cracking	М	L & T Cracking	L

PATCHING – DEEP

Distress / Description	Severity	New Distress / Description	New Severity
Alligator Cracking	Н	Patching	L
Alligator Cracking	Μ	Patching	L
Depression	Н	Patching	L
Depression	Μ	Patching	L
Patching	Н	Patching	L
Patching	Μ	Patching	L
Rutting	Н	Patching	L
Rutting	Μ	Patching	L
Swelling	Н	Patching	L
Swelling	Μ	Patching	L

PATCHING - SHALLOW

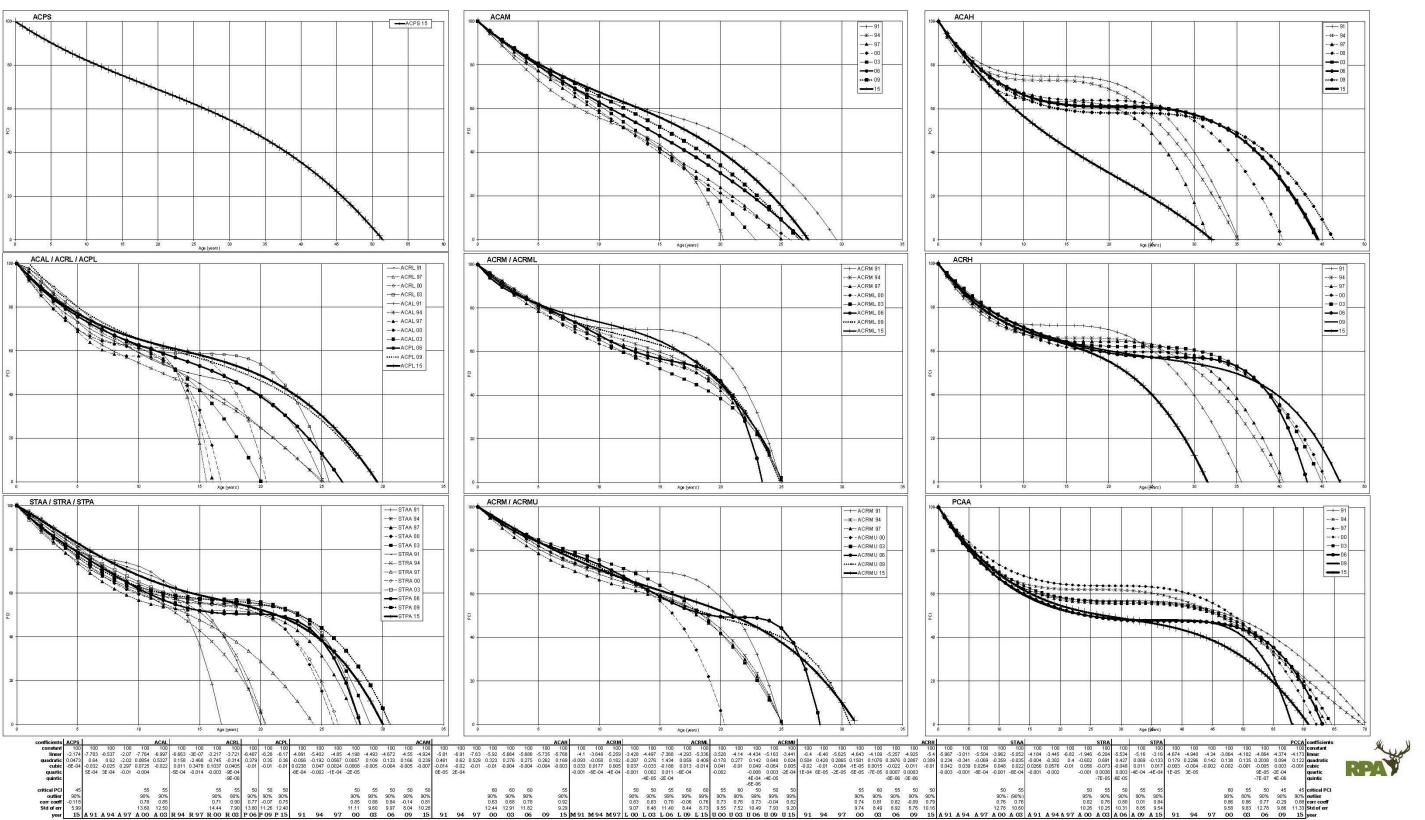
Distress / Description	Severity	New Distress / Description	New Severity
Oil Spillage		Patching	L
Weathering	Н	Patching	L
Raveling	Η	Patching	L
Shoving	Н	Patching	L
Shoving	Μ	Patching	L
Slippage Cracking		Patching	L

TABLE A.7PCC – FIRST YEAR REPAIR CONSEQUENCES

CRACK SEALING

Distress / Description	Severity	New Distress / Description	New Severity
Linear Cracking	Н	Linear Cracking	L
Linear Cracking	Μ	Linear Cracking	L

SLAB REPLACEMENT


Distress / Description	Severity	New Distress / Description	New Severity
Blow-Up	Н	None	
Blow-Up	Μ	None	
Corner Break	Н	None	
Durability Cracking	Н	None	
Large Patch/Utility	Н	None	
Scaling	Н	None	
Scaling	Μ	None	
Faulting	Н	None	
Shattered Slab	Н	None	
Shattered Slab	Μ	None	

PATCHING – FULL DEPTH

Distress / Description	Severity	New Distress / Description	New Severity
Blow-Up	Н	Large Patch/Utility	L
Blow-Up	Μ	Large Patch/Utility	L
Blow-Up	Н	Large Patch/Utility	L
Corner Break	Μ	Large Patch/Utility	L
Corner Break	Н	Large Patch/Utility	L
Durability Cracking	Μ	Large Patch/Utility	L
Small Patch	Н	Small Patch	L
Small Patch	Μ	Small Patch	L
Large Patch/Utility	Н	Large Patch/Utility	L
Large Patch/Utility	Μ	Large Patch/Utility	L

PATCHING – PARTIAL DEPTH

Distress / Description	Severity	New Distress / Description	New Severity
Small Patch	Н	Small Patch	L
Joint Spalling	Н	Large Patch/Utility	L
Joint Spalling	Μ	Large Patch/Utility	L
Corner Spalling	Н	Large Patch/Utility	L
Corner Spalling	Μ	Small Patch	L

FIGURE A.1 FAMILY COMPARISONS

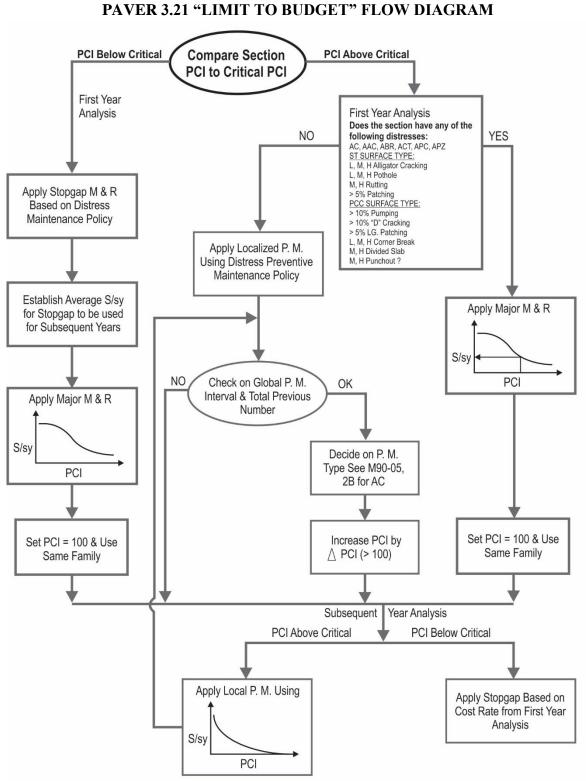


FIGURE A.2 PAVER 3.21 "LIMIT TO BUDGET" FLOW DIAGRAM

Adapted from Pavement Management: The PAVER System, by M.Y. Shahin, September 1989, p 5-71 and USACERL Technical Report M-90/05, July 1990, Paver Update, Pavement Maintenance Management for Roads and Streets Using the PAVER System, by M.Y. Shahin & J.A. Walther, p 69.

APPENDIX B

PRIMER

PAVEMENT DISTRESSES - DESCRIPTIONS, CAUSES, CLASSIFICATION, & REPAIR

The following pavement distresses commonly found on Montana's airport pavements are included in this "primer":

Asphalt (AC) Pavement Distresses:

Alligator Cracking Bleeding Block Cracking Depression Joint Reflection Cracking from PCC Longitudinal & Transverse Cracking (Filled) Longitudinal & Transverse Cracking (Non-Filled) "Oil" Spillage Patching Raveling Rutting Shoving from PCC Swell Weathering

Concrete (PCC) Pavement Distresses:

Corner Break Cracks: Longitudinal, Transverse, & Diagonal Joint Seal Damage Scaling, Map Cracking, and Crazing Settlement or Fault Shattered Slab Spalling (Corner) Spalling (Joints)

Technical material in this section is based on the following sources:

Pavement Maintenance Management for Roads and Streets Using The PAVER System, US Army Construction Engineering Research Laboratory, Technical Report M-90/05, July 1990, M.Y. Shahin and J.A. Walther.

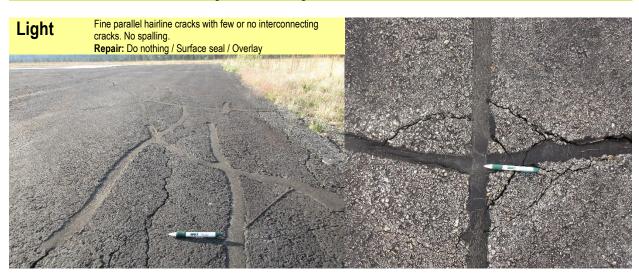
Pavement Management for Airports, Roads and Parking Lots, M.Y. Shahin, 1994, Chapman and Hall.

<u>Guidelines and Procedures for Maintenance of Airport Pavements</u> FAA AC 150/5380-6, 1982.

All photos are taken by employees of Robert Peccia & Associates.

Development of the pavement condition index (PCI) and the "PAVER" system is conducted by the US Army Construction Engineering Research Laboratory with support from: American Public Works Association, Federal Aviation Administration, Federal Highway Administration, US Air Force Engineering and Services Center, US Army Corps of Engineers, and US Navy.

Primer

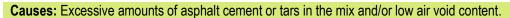

Pavement Maintenance Management Systems like PAVER® have been developed to:

- ✤ Assess overall pavement condition based on accumulated pavement distress.
- ✤ Set standard repair practices for common pavement distresses.
- Determine maintenance and rehabilitation needs and priorities.
 - Project life-cycle costs of repair and replacement options.
 - Decide when replacement is more economical than continued repair.
 - Optimize timing of repairs to preserve the infrastructure investment.
- Optimize pavement performance with available funds.
- Project future pavement conditions and maintenance requirements.

Alligator Cracking

Description: A series of interconnecting cracks caused by fatigue failure on the asphalt concrete surface under repeated traffic loading.

Causes: Loads in excess of the current pavement strength. Heavy aircraft, snow plows, fuel trucks, delivery trucks. Substandard installation or degradation of subgrade, subbase, and/or base course.



Bleeding

AC

Description: A film of bituminous material on the pavement surface that usually becomes sticky when hot and can cause hydroplaning when wet.

Block Cracking

Description: 1 x 1 foot to 10 x 10 feet interconnected cracks that divide the pavement into approximately rectangular pieces.

Causes: Shrinkage of the asphalt concrete and daily temperature cycling coupled with significant asphalt hardening.

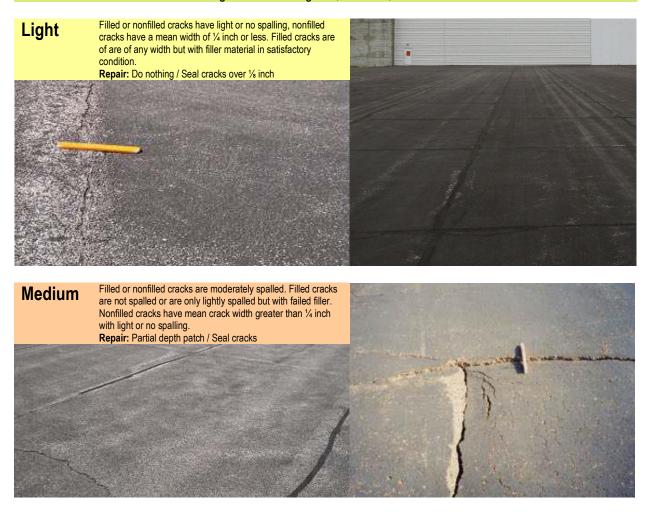
High

Severely spalled cracks with a definite FOD potential. Repair: Seal Cracks / Recycle surface / Pulverize and repave

Depression

AC

Description: Localized pavement surface areas having elevations slightly lower than those of the surrounding pavement, "birdbath" areas; could cause hydroplaning & accelerate pavement decay.


Causes: settlement of the foundation soil or improper construction

Joint Reflection Cracking From PCC

Description: Cracks translated upward through an asphalt surface overlaid a Portland cement concrete (PCC) slab at the slab joints.

Causes: Loads in excess of the current pavement strength. Heavy aircraft, snow plows, fuel trucks, delivery trucks. Substandard installation or degradation of subgrade, subbase, and/or base course.

High

Cracks are severly spalled (definate FOD potential). **Repair**: Mill and repave

AC

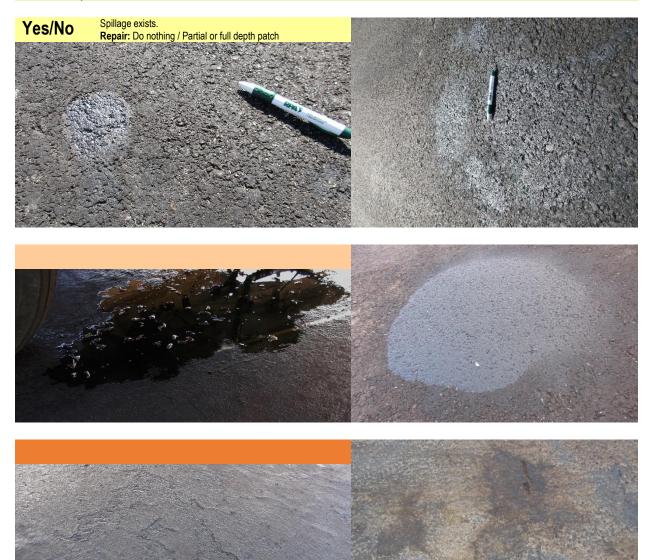
Longitudinal & Transverse Cracking (Non-Filled) AC

Description: Asphalt pavement cracking along or across the laydown direction.

Causes: Poorly constructed paving lane joint, shrinkage of the AC surface due to low temperatures or hardening of the asphalt, or a reflective crack caused by cracks beneath the surface course.

Longitudinal & Transverse Cracking (Filled)

Description: Asphalt pavement cracking along or across the laydown direction.


Causes: Poorly constructed paving lane joint, shrinkage of the AC surface due to low temperatures or hardening of the asphalt, or a reflective crack caused by cracks beneath the surface course.

"Oil" Spillage

Description: Deterioration or softening of the pavement surface caused by the spilling of oil, fuel, or other solvents.

Causes: Spills, leaks, accidents, etc.

Patching

AC

Description: An interruption in the continuous pavement mat, which reduces mat strength and may provide a path for moisture intrusion or adversely affect ride quality. A patch is considered a defect, no matter how well it is performing.

Causes: Tiedown anchors, pavement cores, utility cuts, and other pavement removal and replacement.

Raveling

Description: The dislodging of coarse aggregate particles from the pavement surface.

Causes: Asphalt oil not binding well to the aggregate, and/or physically tearing aggregate out of the surface.

Rutting

Description: A surface depression in the wheel path indicating structural failure of the pavement. Pavement uplift may occur along the sides of the rut.

Causes: Traffic loads exceeding the pavement section's strength, resulting in a permanent consolidation or lateral movement of the pavement layers or subgrade. A heavily loaded plow on wet spring subgrades may be the most common cause of rutting.

Shoving From PCC

Description: A swelling and cracking of asphalt pavements where they adjoin concrete slabs.

Causes: Concrete pavements grow in size as the joints between slabs fill with debris. The increasing size of the slabs shoves and deforms adjacent asphalt pavements.

A large amount of shoving has occurred causing severe roughness or break-up of the asphalt pavement. **Repair**: Surface grind / Partial depth patch / Full depth patch

High

Swell

Description: An upward bulge in the pavements surface, sharply over a small area, or as a longer, gradual "wave" possibly accompanied by surface cracking.

Causes: Frost action in the subgrade or construction errors.

 High
 > 1 ½ inch height differential.

 Repair: Reconstruct / Patch / Surface grind

Weathering

Description: Wearing away of the asphalt binder and fine aggregate matrix from the pavement surface.

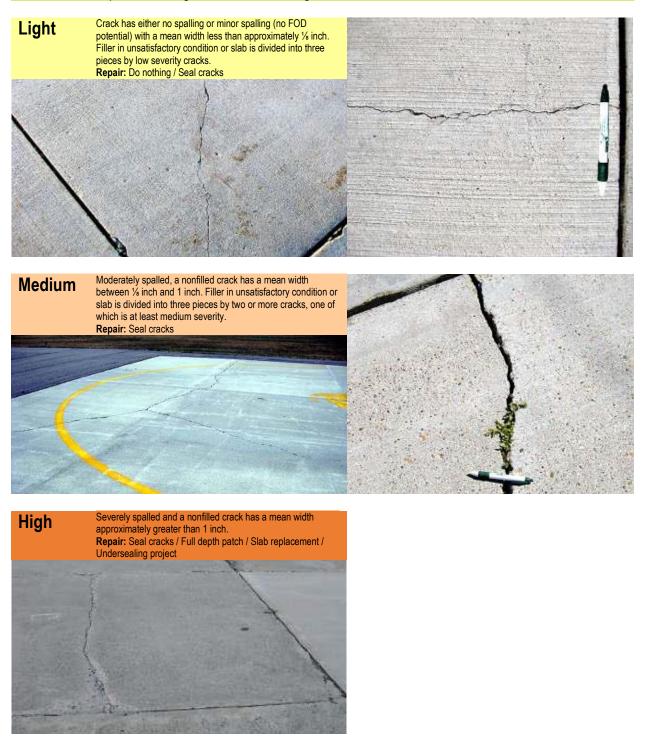
Causes: Aging, or ultraviolet exposure that oxidizes & hardens the asphalt binder.



Corner Break

Description: A crack that intersects the joints at a distance less than or equal to one-half the slab length on both sides, measured from the corner of the slab. The crack extends vertically through the entire slab thickness.

Causes: Load repetition combined with loss of support and curling stresses.



High A nonfilled crack has a mean width greater than 1 inch, severely spalled. Repair: Seal cracks / Full depth patch / Slab replacement / Undersealing project

Cracks: Longitudinal, Transverse, & Diagonal

Description: Cracks that divide the slab into two or three pieces.

Causes: Load repetition, curling stresses and shrinkage stress.

Joint Seal Damage

Description: Any condition that allows significant infiltration of water or enables soil or rocks to accumulate in the joints preventing the slabs from expanding (may result in slab buckling, shattering, or spalling). Sealant hardens and cracks, loses edge bond, doesn't fill the joint, or has weed penetration.

Causes: Reduced pliability from weathering, or poor construction practices. .

Popouts

PCC

Description: A small inverted cone of concrete that breaks loose from the surface ranging from 1 to 4 inches in diameter and $\frac{1}{2}$ to 2 inches deep.

Causes: Freeze thaw action and/or expansive aggregate.

Scaling

Description: A network of shallow, fine, or hairline cracks tending to intersect at angles of 120 degrees, which extend only through the upper surface of the concrete. May lead to "scaling" of the surface (the breakdown of the slab's top approximate $\frac{1}{4}$ " – $\frac{1}{2}$ ").

Causes: Reduced pliability from weathering, or poor construction practices.

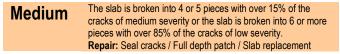
Medium

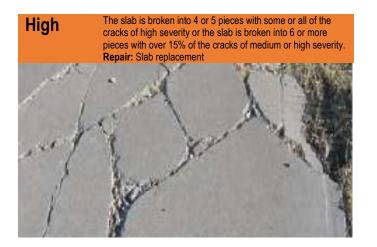
Slab is scaled over approximately 5 percent or less of the surface causing some FOD potential. **Repair:** Partial depth patch / Slab replacement

Settlement

Description: A difference of elevation at a joint or crack.

Causes: Water intrusion into expansive subgrades, base course leach-out and consolidation or contamination, and/or poor construction practices.




Shattered Slab

Description: The slab is broken into four or more pieces, not all contained in a corner break

Causes: Overloading or inadequate support of the slab.

Spalling (Corner)

Description: The raveling or breakdown of the slab within approximately 2 feet of the corner. Spalls angle downward to intersect the joint, not vertically through the slab.

Causes: Infiltration on incompressible materials, excessive traffic loads, or weak (overworked) concrete at the joint.

Spalling (Joint)

Description: The raveling or breakdown of the slab within approximately 2 feet of the edge. A joint spall usually does not extend vertically through the slab, but intersects the joint at an angle.

Causes: Infiltration of incompressible materials, excessive traffic loads, or weak (overworked) concrete at the joint.

