

1.

AASHTOWare Project Construction and Materials Lab Supervisor Lab Technician Role Training Manual

Mar

N	ew Processes and Procedures	3
1.	Receive a concrete sample at the District Lab and route to Helena for testing	3
2. com	Receive an aggregate sample at the destination lab, enter test results and mark a plete.	as 5
3.	Review the test results and mark approved by Level 2	9
4.	Search for all samples for a specific sample type and Contract	.10
5.	Creating a new PCC Mix Design and DMS Review	.11
EX	More examples for the LAB SUPERVISOR \ Labtech Role	.18
6.	Create a new Aggregate Source	.18
7.	Create a sample record for proposed surfacing	.19
8.	Receive the proposed surfacing sample in the District Lab	.21
9.	Add approved materials to a new aggregate source	.22
10.	Create a source for a Material supplier	.23
11.	Associate a material to a Material supplier	.24
12.	Search for all samples for a specific date range.	.25
13.	Search for all samples for a specific test and test status.	.26
14.	Search for all samples for a specific source and material.	.27
15.	Enter test results for the proposed surfacing sample	.28
17.	Create a new Superpave Mix Design	.31
18.	Create a sample record for mix design verification.	.35
19.	Create a New Test Equipment Record	.37

20.	Update a Test Equipment Record	38
21.	Inactivate a Test Equipment Record	39

LABSUPERVISOR - LABTECHNICIAN

1. Receive a concrete sample at the District Lab and route to Helena for testing

Login

Role: LABTECH

Navigation Materials Worksheets > Receive Sample at Destination Lab

- In the Select Destination Lab to Receive At search box, enter *Boz* and choose.
 Bozeman Receiving
- 2. In the Filter Destination Lab field, enter Bozeman and select Bozeman Receiving.
- In the search box below the Select Destination Lab to Receive At field, enter 11X (where X is your assigned letter).
- 4. Click the box to the left of the Sample ID (a green check mark will appear).
- 5. Click on the **Mark As Received** button.
- 6. Verify that the sample disappears from the list.
- 7. Click on the **Sample Records** Quick Link.
- 8. In the search box, enter 11X (where X is your assigned letter).
- 9. Click on the **Sample ID** link.

- 10. Click on the **Destination Lab(s)** tab.
- 11. Click the **New** button.
- 12. Click in the Lab Name field and enter hel.
- 13. Select Helena Receiving.
- 14. Using the **Shipped Date/Time** calendar popup, select the current date and time.
- 15. Click the calendar icon or anywhere on the screen to close it.
- 16. Click Save.
- 17. Click on the **Tests** tab.
- 18. Click on the arrow to the right of the **Assign Tests** button and select *Assign Default Tests.*
- 19. Verify the tests ConcreteStrength28 and ConcreteStrength7 have been added.
- 20. Click the **Home** button.

2. Receive an aggregate sample at the destination lab, enter test results and mark as complete.

Login

Role: LABTECH

Navigation

Home >Materials Worksheets >Receive Sample at Destination Lab

- 1. In the search bar under the **Select Destination Lab to Receive At** heading, begin to type Bozeman to initiate search.
- 2. Select Bozeman Receiving.
- 3. In the **Search** field, enter 22X (where X is your assigned letter).
- 4. Check the box next to the desired Sample ID. A green check mark appears
- 5. On the righthand of the screen, click the Mark as Received button
- 6. Verify that the sample disappears from the list
- 7. Click on the Enter Test Results link.
- 8. In the **Search** field enter 22X (where X is your assigned letter) under the **Tests** section.
- 9. For the MT 210, 230 test, click on **Test Number** 1.0.
- 10. In the Planned Test Start Date field select 09/05/2018.
- 11. In the Estimated Completion Date field select 09/07/2018.
- 12. Click the Save button.
- 13. Click on the **Testers** tab.
- 14. Click the **New** button.
- 15. In the Search field type your last name and select your name.
- 16. Click on the **General** tab.
- 17. Click Save.
- 18. Click on the **Component Action** button and select *MDT Proctor*.
- 19. Enter data in the agency view according to the screen shot below.

	Maximum Density - Test 1 (%)
6.1	140.3
Optimum Moisture - Test 2 (Ib/cu ft)	Maximum Density - Test 2 (%)
Avg Optimum Moisture (lb/cu ft)	Avg Maximum Density (%)
6.1	140.3
COARSE PARTICLE CORRECTION	
Percent Coarse Particles-Pc (%)	
6.00	
6.00 Percent Fine Particles-Pf (%)	
6.00 Percent Fine Particles-Pf (%) 94.00	
6.00 Percent Fine Particles-Pf (%) 94.00 Bulk Sp. Gravity of Coarse Particles (K)	

- 20. In the Test Result Value field select Pass.
- 21. Click the **Save** button.
- 22. Click on the Sample Record Test quick link at the top of the page.
- 23. Click on the Component Action button and select Mark Test Complete.
- 24. Verify the **Test Status** changed to 40 Test Complete.

Note: Once test is marked Complete and you need to edit data you will you will need to requeue the test.

- 1. Click the Review Tests Quick link.
- 2. Enter last four digits of sample ID in the search box.
- 3. Go to the action Item and select Tasks.
- 4. <u>Select Requeue Test.</u>
 - 25. Click on the Enter Test Results Quick link

- 26. Verify that the MT 210, 230 test row for this sample has disappeared.
- 27. For the MT 202 test, click on Test Number 1.0.
- 28. In the Planned Test Start Date field select 09/06/2018.
- 29. In the Estimated Completion Date field select 09/07/2018.
- 30. Click the Save.
- 31. Click on the **Testers** tab.
- 32. Click the New button.
- 33. In the Search field type your last name and select your name.
- 34. Click Save.
- 35. Click on the Reference Specifications tab
- 36. Check the **Use for Test** checkbox.
- 37. Click Save.
- 38. Click on the **Component Action** button and select *MDT Sieve Analysis of Fine and Coarse Aggregates* under **Views**.
- 39. Enter data as shown in the following screen shot. Data is entered into boxes
- 40. Sample weight is a calculated field.

Sample Weight (lbs)	Before Wash Weight (g)
49.16	543.90
Weight Retained 4 Mesh (lbs)	After Wash Weight (g)
26.58	445.80
Weight Passing 4 Mesh (lbs)	Loss by Wash (g)
22.58	98.10
% Total	
100.00	No Spec
% Coarse	Reciprocal
54.07	0.08440
% Fines	Pan
45.93	543.90
	Use Reciprocal
	Yes

- 41. Click Save.
- 42. Verify the Sample Weight(**Ibs**), % Total, % Coarse, % Fines, Loss by Wash(g) and Reciprocal fields are auto-populated
- 43. Enter Weight Retained as shown in the following screen shot:

Sieve Size	Weight Retained 🔻	Weight Passing	Percent Retained	Percent Passing
1.5 in. (37.5 mm)	0.00	49.16	0.00	
1.25 in. (31.5 mm)	0.00	49.16	0.00	
1 in. (25 mm)	0.00	49.16	0.00	
3/4 in. (19 mm)	0.00	49.16	0.00	
1/2 in. (12.5 mm)	6.21	42.95	12.60	
3/8 in. (9.5 mm)	13.47	35.69	27.40	
4M (4.75 mm)	26.58	22.58	54.10	
8M - 10M	195.50	348.40	35.90	
16M				
30M				
40M - 50M	357.40	186.50	65.70	
80M - 100M	403.10	140.80	74.10	
200M	441.20	102.70	81.10	

- 44. In the Test Result box type PASS and select Pass.
- 45. Click Save
- 46. Click on the **Sample Record Test** quick link
- 47. Scroll down and verify the **Test Result Value** is auto-populated from the Agency View
- 48. Click on the Component Action button and select Mark Test Complete
- 49. Verify the **Test Status** changed to 40 Test Complete

Note: Once test is marked Complete and you need to edit data you will you will need to requeue the test.

- 5. Click the Review Tests Quick link.
- 6. Enter last four digits of sample ID in the search box.
- 7. Go to the action Item and select Tasks.
- 8. <u>Select Requeue Test.</u>

3. Review the test results and mark approved by Level 2

Login

Role: LABSUPERVISOR

Navigation

Home > Materials Worksheets > Review Tests

- 1. In the **Search** field, enter 22X (where X is your assigned letter)
- 2. From the **Row Action** button for MT 202 click on **Views**, select MDT Sieve Analysis of Fine and Coarse Aggregates link
- 3. Review the test results
- 4. Click the **Previous** button
- 5. From the Row Action button select Tasks
- 6. Select Mark Test Review by Level 2
- 7. From the **Row Action** button for MT 210, 230 click on **Views**, select MDT Proctor link
- 8. Review the test results
- 9. Click the Previous button
- 10. From the Row Action button for MT 210, 230 select Tasks
- 11. Select Mark Test Review by Level 2
- 12. Verify the sample disappears from the list

4. Search for all samples for a specific sample type and Contract

Login

Role: LABTECH

Navigation Materials > Find Sample

- 1. Check the Contract ID checkbox in the Fields list
- 2. Enter 07817X in the Criteria search field
- 3. Click the Magnifying Glass icon to the right of the Criteria search field
- 4. Expand the **Query** button left side of window and select **Execute**.
- 5. Verify that a list of samples is displayed under the Sample Record section
- 6. Right click on any Sample ID link and click on Open in a new window
- 7. This will open up the Sample Record Summary window
- 8. Click on the **Contract** tab
- 9. Verify that Contract 07817X is listed

5. Creating a new PCC Mix Design and DMS Review

Login

Role: LABSUPERVISOR

Navigation

Materials > Mix Design

- 1. Select Add from the Component Action Menu.
 - Enter last 2 digits of mix design approval year + district/area + class of concrete + 2digit sequential number (Example: 1951DECK01) in the **Mix Design ID** field.
- 2. Select PCC Portland Cement Concrete Mix Design from the Type Drop-down.
- 3. Click in the **Material and Source auto-complete fields** and press enter to get the list of available materials and sources to choose from.
- 4. Enter Today's Date in the **Effective Date** Field.
- 5. Select ACTIVE-Active from the Status drop-down.
- 6. Click **Save** and you will be directed to the Mix Design Summary Window.
- 7. Click the **Component Materials** tab.
- 8. Click Select Component Material.
- 9. Choose the applicable Material code for your Mix Design.
- 10. Click on the Material code in the Material Code column and green checks will appear.
- 11. Click Add to Mix Design.
- 12. Click on the arrow next to your material code which will expand the record.
- 13. Click in the Source auto-complete field and hit Enter.
- 14. Choose your Source and any other information you need to input.
- 15. Click Save.
- 16. From the Component Action button under views click AV #1 MDT Concrete Mix Design Contractor Mix Design agency view.
- 17. NOTE: You <u>MUST</u> open AV #1 MDT Concrete Mix Design Contractor Mix Design agency view and enter your data and save <u>BEFORE</u> opening AV #2 – MDT Concrete Mix Design – Aggregate (Comb) agency view. There is data that is populated from AV #1 into AV #2.
- 18. Enter all applicable fields as shown below:

 Concrete Mix Design 							
Warning: Data in the Parent Entity has changed. Click	Save to refresh the data and recalcu	late any affected values on the Agenc	y View.				
Proposed Agg, Cementitious Matls & Admix	CA #1 🔻	CA #2 🔻	CA #3 🔻	MA #1 🔻	Fine #1 🔻	Fine #2 🔻	
Pit Number	\$3-080002				53-080002		
Pit Name	Fred Gillette Source #1				Fred Gillette Source #1		
Size/Fraction	58.6				41.5		
Specific Gravity	2.644				2.612		
Absorption	1.2				1.6		
Aggregate Class							
Cement	CHS						
Flv Ash							
GGBES							
Other CM							
ATA Admin #4	DADE	Marshar Ala AT7000					
AEA-Admix #1	BASE	Master Air AE200	N/A				
Admix #2	BASE	WRA Master Polyheed 997	Type A				
Materials and Admixtures	Manufacturer/Supplier	Mill/Plant/Admix Name	Type/Class	Specific/Gravity 🔻			
Admix #4		musicion being	Tipe o				
Admix #5							
Admix #6							
Proposed Mix Designs							
MDT Concrete Class							
MDT Concrete Class 551.03.02.02 - General V							
MDT Concrete Class 551.03.02.02 - General V Water (ibs.)							
MDT Concrete Class 551.03.02.02 - General V Water (Ibs.) 250							
MDT Concrete Class 551.03.02.02 - General Water (Ibs.) 250 Compant (Ibs.)					Camant %		
MDT Concrete Class 551.03.02.02 - General Water (Ibs.) 250 Cement (Ibs.) 595					Cement %		
MDT Concrete Class 551.03.02.02 - General Water (Ibs.) Cement (Ibs.) 595					Cement % 100		
MDT Concrete Class 551.03.02.02 - General Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.)					Cement % 100 Fly Ash %		
MDT Concrete Class 551.03.02.02 - General V Water (Ibs.) 250 Cerment (Ibs.) 595 Ffy Ash (Ibs.)					Cement % 100 Fly Ash % 0		
MDT Concrete Class 551.03.02.02 - General V Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.) GGBFS (Ibs.)					Cement % 100 Fly Ash % 0 GGBFS %		
MDT Concrete Class 551.03.02.02 - General V Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.) GGBFS (Ibs.)					Cement % 100 Fly Ash % 0 GGBFS % 0		
MDT Concrete Class 551.03.02.02 - General V Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.) GGBFS (Ibs.) Other CM (Ibs.)					Cement % 100 Fly Ash % 0 GGBFS % 0		
MDT Concrete Class 551.03.02.02 - General ▼ Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.) GGBFS (Ibs.) Other CM (Ibs.)					Cement % 100 Fly Ash % 0 GOBFS % 0 OtherCM % 0		
MDT Concrete Class 551.03.02.02 - General ▼ Water (Ibs.) 250 Cement (Ibs.) 595 Fly Ash (Ibs.) GGBFS (Ibs.) Other CM (Ibs.)					Cement % 100 Fly Ash % 0 GOBFS % 0 OtherCM % 0		

Gradation Type	
Combined	
Fine #1 (SSD lbs.)	Fine #1 %
1260	41.4
Fine #2 (SSD lbs.)	Fine #2 %
	0
CA #1 (SSD lbs.)	CA #1 %
1780	58.6
CA #2 (SSD lbs.)	CA #2 %
	0
CA #3 (SSD lbs.)	CA #3 %
	0
MA #1 (SSD lbs.)	MA #1 %
	0
% Air Content	
5.5	
TargetSlump	
3 in 👻	

Admix #1 Dosage	Admix #1 Unit oz/cy
Admix #2 Dosage	Admix #2 Unit oz/cy
Admix #3 Dosage	Admix #3 Unit oz/cy
Admix #4 Dosage	Admix #4 Unit
Admix #5 Dosage	Admix #5 Unit
Admix #6 Dosage	Admix #6 Unit
Volume (27.00 cf +/- 0.10 cf) 27.04	

TRIAL BATCH DATA					
MDT Concrete Class:					
Compressive Strengths	3 - Day 🔻	7 - Day 🔻	28 - Day 🔻	56 - Day 🔻	
Cylinder 1	3760	4320	5270		
Cylinder 2		4300	5280		
Cylinder 3			5290		
AV/C	0700	1210	5000	0	

Modulus of Rupture (28-Day):	
1	
AVG	
0	
Slump	Slump Flow
Slump (inches)	Slump-Flow (inches)
4.00	
Temperature (F)	J-Ring (inches)
59	
Air (%)	VSI
7.00	
144.0	
Yield (vd3)	
27.2	

Rapid Chloride Perm (coulombs) (28-Day):	
1	
2	
3	
AVG	
0	
Surface Resistivity (Kohm-cm) (28-Day):	
Surf Res 28 Day #1	Surf Res 56 Day #1
Surf Res 28 Day #2	Surf Res 56 Day #2
Surf Res 28 Day #3	Surf Res 56 Day #3
28 Day Avg	56 Day Avg
0	0

Aggregate Data	Coarse 🔻	Coarse #1 🔻	Coarse #2 🔻	
Wear AASHTO T96 (%)	24.4			
Soundness AASHTO T104 (%)	0.2			
Lightweight Pieces AASHTO T113 (%)	0.9			
Clay and Friable AASHTO T112 (%)	0.0			
Intermediate				
Wear AASHTO T95 (%) Soundness AASHTO T104 (%) Lightweight Pieces AASHTO T113 (%) Clay and Friable AASHTO T112 (%)				
Fine #1				Fine #2
Organic Impurities AASHTO T21-Fine				Organic Impurities AASHTO T21-Fine 2
1				
Soundness AASHTO T104(%)-Fine				Soundness AASHTO T104(%)-Fine 2
3.5				
Lightwt Pieces AASHTO T113(%)-Fine				Lightweight Pieces AASHTO T113(%)-Fine 2
0.9				

- 19. Click Save.
- 20. Click on the **Mix Design** quick link at the top to get back to the Mix Design Summary screen.
- 21. From the Component Action button under views click AV #2 MDT Concrete Mix Design Aggregate (Comb)
- 22. Enter your data and **save**.

Mix Design											_
Agency Vi	ew Summary										
✓ Concrete	e Mix Design									Save 🗸	9
										0 char	nged
Sieves	Coarse Agg 1 🔻	Coarse Agg 2 🔻	Coarse Agg 3 🔻	Mid 1 🔻	Fine Agg 1 🔻	Fine Agg 2 🔻	Combined Agg % Pass	Combined Agg % Retained	Each Sieve % Retaine	1	-
2 in.	100.0				100.00		10	10	0	0	
1 1/2 in.	999,999,999.9 100.0				100.00		10	10	0	0	•
1 in.	100.0				100.00		10	10	0	0	•
3/4 in.	97.0				100.00		9	18	2	2	•
1/2 in.	69.0				100.00		8	32	18	16	•
3/8 in.	41.0				100.00		6	5	35	17	•
No. 4	0.9				100.00] 4	12	58	23	•
No. 8	0.7				82.00		3	44	66	8	•
No. 16	0.6				58.00		2	24	76	10	•
No. 30	0.6				44.00		1	9	81	5	•
No. 50	0.6				19.00			8	92	11	-
No. 100	0.6				3.00			2	98	6	•
No. 200	0.5				1.00			1	99	1	-
Pan								0	100	1	•
Blend Perc	58.6	0	0	0	41.4	0					-
_											_

- 23. As you can see in the screen shot above...The Blend Perc fields are populated from the data you entered into AV #1.
- 24. Click on the **Mix Design** quick link at the top to get back to the Mix Design Summary screen.
- 25. From the Component Action button under views click MDT Concrete Target.
- 26. Enter the applicable data and save.

Target Approval Date	Initial Mix Desig
01/15/2018	\checkmark
Strength Target	New Mix Design
4550.00	
Strength Target Min	Min
4000	-500
Strength Target Max	Max
5500	500
	Calc Min
	4,050.00
	Calc Max
	5,050.00

Sieves	Target 🔻	Min	Max	Min Tolera	Max Tolera	
2 in. (50 mm)	100.0	95	100	-5	5	
1.5 in. (37.5 mm)	100.0	95	100	-5	5	
1.25 in. (31.5 mm)	100.0	95	100	-5	5	
1 in. (25 mm)	100.0	95	100	-5	5	
3/4 in. (19 mm)	100.0	95	100	-5	5	
1/2 in. (12.5 mm)	100.0	95	100	-5	5	
3/8 in. (9.5 mm)	77.1	72.1	82.1	-5	5	
4M (4.75 mm)	53.6	48.6	58.6	-5	5	
8M - 10M	42.7	38.7	46.7	-4	4	
16M	30.6	26.6	34.6	-4	4	
30M	24.0	20	28	-4	4	
40M - 50M	9.9	6.9	12.9	-3	3	
80M - 100M	1.8	0	3.8	-2	2	
200M	0.2	0	1.7	-1.5	1.5	

- 27. Click on the **Mix Design** quick link at the top to get back to the Mix Design Summary screen.
- 28. Select Attachments from the Action Menu.
- 29. Click Select File.
- 30. Browse to the folder and select the document you want to attach.
- 31. Click Open.
- 32. Click Save.
- 33. Select Mix Design Summary from the Component Action Menu.
- 34. After reviewing the data and verifying specifications are met, enter **Today's Date** in the **DMS Approved Date**.
- 35. Click Save.

EXAMPLE More examples for the LAB SUPERVISOR \ Labtech Role

6. Create a new Aggregate Source

Login

Role: LABTECH

Navigation

Reference Data > Sources

Test Case Steps

- 1. Add New Source by selecting option under Action Button.
- 2. In the **Source ID** field enter 21-000504[X]
- 3. In the Source Name field enter AM Welles (DSL)
- 4. From the **Source Type** dropdown list select AGG-Aggregate Pit
- 5. Under the **Source Type** section check boxes for Bituminous, Non-Bituminous, Concrete and Cover
- 6. In the **Geographic Area** dropdown list select **BUT-Butte**
- 7. In the Legal Description field enter 05S01W16DC
- 8. From the **Status** dropdown list select ACTIVE Active
- 9. From the **Effective Date** popup select a current or past date.
- 10. Click Save
- 11. Select the **Addresses** tab.
- 12. Select Address ID field enter 01.
- 13. In the **County** field under Location enter *silver* and select C047 Silver Bow.
- 14. In the **District** field under Location enter *butte* and select 2 Butte.
- 15. Click Save.

7. Create a sample record for proposed surfacing.

Login

Role: LABTECH

Navigation Materials > Sample Records

- 1. Click on the Component Action button in upper righthand corner of screen and select *Add.*
- 2. In the Material Code Name field enter proposed and then select PC 1.
- 3. In the **Sample Date** field select the current date from the calendar popup.
- 4. In the **Sample Type** field select *PE Pre-Construction* from the dropdown list.
- 5. In the Acceptance Method field select TEST Test Results from the dropdown list.
- 6. Click Save.
- 7. In the **Witnessed By ID Name** field enter (*your last name*) then select your name from list.
- 8. In the Specimen(s) Number field enter 50.
- 9. In the Intended Use field enter: Surfacing-15 Holes-35 Comp-50 sacks total.
- 10. In the District/Area select: BUT Butte.
- 11. In the Lab Reference Number field enter: 43587-89.
- 12. In the Control Type field select: UPN Uniform Project Number.
- 13. In Preconstruction Number field re-enter the UPN #: 04807.
- 14. Click Save.
- 15. ***Make a note of the Sample ID's last four digits.
- 16. Select Sources Tab.
- 17. Press the Select Primary Source button and type welles.
- 18. Select AM Welles (DSL) from the list.
- 19. Click on Add to Sample Record.

- 20. Select Destination Lab(s) Tab.
- 21. Click New.
- 22. In the Lab Name field enter *butte* and select Butte Receiving.
- 23. Click New
- 24. In the Lab Name field enter hel and select Helena Receiving.
- 25. Click Save.
- 26. Select Tests tab.
- 27. Click on the **Assign Tests** button.

- arrow over twice to Select Optional Tests
- 29. Select the following tests to be run (*SieveAnalysis, SoilClass-Sieve, SoilClass-LLPI, SoilClass, LAWear, SandEquivalent*) by clicking on the **checkbox** to the left. A green checkmark will appear in each box as it is selected.
 - ÷

30.

arrow over to Add Test Runs (Don't click the Confirm Button yet)

- 31. Change the Test Runs from 1 to 3 for SoilClass-Sieve, SoilClass-LLPI and SoilClass
- 32. Click Confirm
- 33. Scroll to the bottom left and click on Load Next 2.
- 34. Verify the tests were added.
- 35. In the Test Description field, add Hole numbers to the Butte Lab tests.
- 36. Click Save

8. Receive the proposed surfacing sample in the District Lab

Login

ROLE: LABTECH

Navigation Continuation from previous exercise

- 1. Click on the **Receive at Destination Lab** quick link.
- 2. In the Select Destination Lab to Receive At box enter but and select Butte Receiving.
- 3. In the Search field enter the last 4-digits of the Sample ID.
- 4. Check the checkbox to the left of the sample ID. A green check mark will appear.
- 5. Click on the Mark as Received button at top right corner of screen.

9. Add approved materials to a new aggregate source

Login

Role: LABTECH

Navigation

Reference Data > Sources Enter 21-000504[X] > Materials Tab

- 1. Click on the Select Source Materials button
- 2. Check the 701.01.01.01 Fine Concrete Aggregate, 701.01.02.01 Coarse Concrete Aggregate No. 2, 701.01.03.01 Combined Concrete Aggregate rows.
- 3. Click the **Add to Source** button.
- 4. Click Save.
- 5. Click on the 701.01.01.01 Fine Concrete Aggregate Material Code link.
- 6. From the **Effective Date** calendar popup, select the current date.
- 7. In the **Status** dropdown list select ACTIVE.
- 8. Click Save.
- 9. Click the Source quicklink at the top.
- 10. Click on the 701.01.02.01 Coarse Concrete Aggregate No. 2 Material Code link.
- 11. From the Effective Date calendar popup, select the current date.
- 12. In the Status dropdown list select ACTIVE.
- 13. Click Save.
- 14. Click the Source quicklink at the top.
- 15. Click on the 701.01.03.01 Combined Concrete Aggregate Material Code link.
- 16. From the **Effective Date** calendar popup, select the current date.
- 17. In the Status dropdown list select ACTIVE.
- 18. Click Save.

10. Create a source for a Material supplier

Login

Role: LABTECH

Navigation Reference Data > Sources

Click the Component Action button and select Add New Source.

- 1. Enter *TreasureState[x]* in the **Source ID** field.
- 2. Enter *Treasure State Seed Company* in the **Source Name** field.
- 3. Select Great Falls from the Geographic Area dropdown list.
- 4. Select 01/01/2018 from the Effective Date calendar popup.
- 5. Select ACTIVE Active from the Status dropdown list.
- 6. Select MTRL Material Supplier from the Source Type dropdown list.
- 7. Click Save.

11. Associate a material to a Material supplier

Login

Role: LABTECH

Navigation

Continuation from previous test case

Click on the Materials Tab

- 1. Click on the Select Source Materials button.
- 2. Type *seed* in the **Search** field.
- 3. Click on the 713.08.01.01 Seed row.
- 4. Click the **Add to Source** button.
- 5. Click Save.
- 6. Click on the 713.08.01.01 Material Code link.
- 7. Select 02/01/2018 from the **Effective Date** calendar popup.
- 8. Select ACTIVE Active from the Status dropdown list.
- 9. Click Save.

12. Search for all samples for a specific date range.

Login

Role: LABTECH

Navigation Home > Materials > Find Sample

- 10. Check the Sample Date checkbox in the Fields list
- 11. Click the Magnifying Glass icon to the right of the Criteria search field
- 12. Verify that no samples are displayed under the Sample Record section
- 13. Expand the Query section
- 14. Change the dropdown to the right of Sample date to Is Later Than or On
- 15. Select 03/01/2018 from the Calendar popup
- 16. Click on the Duplicate icon to the right of the Calendar icon 🐴
- 17. Change the dropdown from Or to And
- 18. Change the dropdown to the right of Sample date on the 2nd row to *Is Earlier Than or On*
- 19. Select 04/16/2018 from the Calendar popup
- 20. Click the **Execute** button
- 21. Verify that there are samples showing in the list of samples under the **Sample Record** section and they have **Sample Dates** within 04/01/2018 and 04/16/2018

13. Search for all samples for a specific test and test status.

Login

Role: LABTECH

Navigation

Home > Materials > Find Sample

- 1. Click on Source in the Entity list
- 2. Click the Source Name checkbox in the Fields list
- 3. Enter Caliber in the Criteria search field
- 4. Click the Magnifying Glass icon to the right of the Criteria search field
- 5. Verify that a list of samples is displayed under the Sample Record section
- 6. Right click on any **Sample ID** link and click on *Open in a new window*
- 7. This will open up the Sample Record Summary window
- 8. Click on the **Sources** tab
- 9. Verify that High Caliber Concrete is listed as the Primary Source
- 10. Close the Sample Record Summary window (Internet Explorer window)
- 11. Click the left arrow icon to the left of Source above the Entity list
- 12. Click on Material in the Entity list
- 13. Click the Material Full Name checkbox in the Fields list
- 14. Enter General in the Criteria search field
- 15. Expand the Query section
- 16. Click the Magnifying Glass icon to the right of the Criteria search field
- 17. Verify that the list of samples under the Sample Record section are all Concrete-Class General
- 18. Change the dropdown from Or to And
- 19. Click the Execute button
- 20. Verify that the list of samples under the **Sample Record** section displays a shorter list
- 21. Right click on any Sample ID link and click on Open in a new window
- 22. This will open up the Sample Record Summary window
- 23. Verify that the Material Code Name is Concrete-Class General
- 24. Click on the Sources tab
- 25. Verify that High Caliber Concrete is listed as the Primary Source
- 26. Close the Sample Record Summary window (Internet Explorer window)

14. Search for all samples for a specific source and material.

Login

Role: LABTECH

Navigation Home > Materials > Find Sample

- 27. Click on Source in the Entity list
- 28. Click the Source Name checkbox in the Fields list
- 29. Enter Caliber in the Criteria search field
- 30. Click the Magnifying Glass icon to the right of the Criteria search field
- 31. Verify that a list of samples is displayed under the Sample Record section
- 32. Right click on any **Sample ID** link and click on Open in a new window
- 33. This will open up the Sample Record Summary window
- 34. Click on the Sources tab
- 35. Verify that High Caliber Concrete is listed as the Primary Source
- 36. Close the Sample Record Summary window (Internet Explorer window)
- 37. Click the left arrow icon to the left of Source above the Entity list
- 38. Click on Material in the Entity list
- 39. Click the Material Full Name checkbox in the Fields list
- 40. Enter General in the Criteria search field
- 41. Expand the Query section
- 42. Click the Magnifying Glass icon to the right of the Criteria search field
- 43. Verify that the list of samples under the Sample Record section are all Concrete-Class General
- 44. Change the dropdown from Or to And
- 45. Click the Execute button
- 46. Verify that the list of samples under the **Sample Record** section displays a shorter list
- 47. Right click on any **Sample ID** link and click on Open in a new window
- 48. This will open up the Sample Record Summary window
- 49. Verify that the Material Code Name is Concrete-Class General
- 50. Click on the Sources tab
- 51. Verify that High Caliber Concrete is listed as the Primary Source

15. Enter test results for the proposed surfacing sample

Login

ROLE: LABTECH

Navigation

Continuation from previous test case

- 1. Click on the Enter Test Results quick link.
- 2. Enter the sample ID or last 4-digits of the Sample ID in the **search** field.
- 3. On the MT 202 (for Soils Class) H1, click on the 1.0 link.
- 4. In the **Planned Test Start Date** choose current date.
- 5. In the Estimated Completion Date choose tomorrow's date.
- 6. Click on the Action button and select *MDT Sieve Analysis of Fine & Coarse Aggregates* under **Views.**
- 7. Enter data as follows:

Sample Weight (Ibs)	Before Wash Weight (g)
51.68	523.40
Weight Retained 4 Mesh (Ibs)	After Wash Weight (g)
41.03	440.80
Weight Passing 4 Mesh (lbs)	Loss by Wash (g)
10.65	82.60
% Total	
100.00	
100.00	No Spec
% Coarse	No Spec Reciprocal
% Coarse 79.39	No Spec Reciprocal 0.03940
% Coarse 79.39 % Fines	No Spec Reciprocal 0.03940 Pan
% Coarse 79.39 % Fines 20.61	No Spec Reciprocal 0.03940 Pan 523.40
% Coarse 79.39 % Fines 20.61	No Spec Reciprocal 0.03940 Pan 523.40 Use Reciprocal

8. Click Save.

9. Enter the Weight Retained as follows:

Sieve Size	Weight Retained 🔻	Weight Passing	Percent Retained	Percent Passing	
3.5 in. (90mm)	2.53	49.15	4.90	9	95.0
3 in. (75 mm)					
2.5 in. (63mm)	3.39	48.29	6.60	ļ	93.0
2 in. (50 mm)	9.49	42.19	18.40	1	82.0
1.5 in. (37.5 mm)	13.40	38.28	25.90		74.0
1.25 in. (31.5 mm)					
1 in. (25 mm)	21.92	29.76	42.40	ł	58.0
3/4 in. (19 mm)	26.55	25.13	51.40	4	49.0
1/2 in. (12.5 mm)	33.10	18.58	64.00	;	36.0
3/8 in. (9.5 mm)	36.19	15.49	70.00	;	30.0
4M (4.75 mm)	41.03	10.65	79.40	:	21.0
8M - 10M	91.00	432.40	17.40		17.0
16M					
30M					
40M - 50M	151.60	371.80	29.00	1	15.0
80M - 100M	298.90	224.50	57.10		9.0
200M	433.70	89.70	82.90		3.5

10. In the Test Result field select Pass.

- 11. Click Save.
- 12. Click on the Sample Record Test quick link at the top.
- 13. Scroll down and verify the Test Result is auto-populated with Pass.
- 14. Click on the Component Action menu and select Mark Test Complete.
- 15. Click on the Enter Test Results quick link at the top.

- 16. On the AASHTO M 145 (for Soils Class) H1, click on the 1.0 link.
- 17. Click on the **Reference Specifications** tab.
- 18. Check the **Use for Test** checkbox.
- 19. Click Save.
- 20. Click on the Action button and select MDT LLPI under Views.
- 21. In the **Points** dropdown list select 1.
- 22. In the Test Results field select Pass.
- 23. Click Save.
- 24. Click on the Sample Record Test quick link at the top.
- 25. Scroll down and verify the Test Result is auto-populated with Pass.
- 26. Click on the Component Action menu and select Mark Test Complete.
- 27. Click on the Enter Test Results quick link at the top.
- 28. On the AASHTO M 145 H1, click on the 1.0 link.
- 29. Click on the Action button and select *MDT Soil Class* under Views.
- 30. Confirm the following data is imported from the Sieve and LLPI tests and the soil class is calculated.

10 Mesh	40 Mesh	200 Mesh	Liquid Limit	Plastic Limit	Plasticity Index	Group Index
17	15	3.5	0	NP	0	0

Soil Class A-1-a(0)

- 31. In the Test Results field select Pass.
- 32. Click Save.
- 33. Click on the **Sample Record Test** quick link at the top.

17. Create a new Superpave Mix Design

Login

Role: LABTECH

Navigation

Materials > Mix Design

- 1. Select Add from the Action Menu.
- 2. In the Mix Design ID field enter 185S01X (where X is your assigned letter).
- 3. From the **Type** Drop-down select *Superpave Superpave Mix Design*.
- 4. Enter 401.03.00.01 in the Material field.
- 5. Type 51-000488 in the Source field and select Riverside Sand and Gravel Verlin Hale.
- 6. Select Effective Date of today's date.
- 7. Select *ACTIVE-Active* from the Status drop-down.
- 8. Click **Save** and you will be directed to the Mix Design Summary Window.
- 9. Click the **Component Materials** tab.
- 10. Click Select Component Material.
- 11. Type *401* in the **Search** field.
- 12. Click **401.03.00.01** in the **Material Code** column and green check will appear.
- 13. Click Add to Mix Design.
- 14. In the **Source** field enter 51-000 and select 51-000488.
- 15. Click Save.
- 16. From the **Component Action** button, click *Contractor Superpave Mix Design* under **Views.**

✓ Superpave Mix Design	
Mix Design Properties	
20 Yr Design ESALs Total	PG Binder Supplier
3,000,000.00	Calumet Montana Refining LLC (formerly
20 Yr Design ESALs Daily	CALOWLI
876.00	Binder Supplied By
Source Pit Code	
	Hamburg Results (mm)
No. of Gyrations - N Initial	5.50
7.00	Passes
No. of Gyrations - N Design	
75.00	Degrees (C)
No. of Gyrations - N Maximum	
115.00	
Miniau Terra	200.00
Mixing Temp	
300.00	Unit
Unit	C -
C V	PG Binder Grade
PG Binder Sp. Grav	70-28 💌
1.027	Hyd Lime Supplier
Design Nominal May Ang Size	Graymont
	Hyd Lime Supplied By
Unit	Contractor 💌
in v	
Tomporature	
Temperature	

Coarse Agg Angularity 1 Face	Total Binder Percent (Pb)
100.00	5.30
Coarse Agg Angularity 2 Face	Virgin Binder Percent (RAP/RAS)
100.00	0.00
Sand Equivalent	Percent Binder Replacement (BR)
52.00	0.00
lat And Elong Particles	% Binder in RAP 1
7.30	
Fine Aggregate Angularity	% Binder in RAP 2
48.90	
Wear (L.A. Abrasion)	% Binder in RAS
Wear (L.A. Abrasion)	% Binder in RAS
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties	% Binder in RAS
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des	Bulk Sp. Gr. @ N design (Gmb)
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb)
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A)
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM)	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP)
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM) 3.40	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP) 1.29
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM) 3.40 % of Rice (Gmm) at N ini	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP) 1.29 Tensile Strength Ratio (TSR)
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM) 3.40 % of Rice (Gmm) at N ini 86.80 % (Complete Note: 100, 100, 100, 100, 100, 100, 100, 100	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP) 1.29 Tensile Strength Ratio (TSR) 0.00
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM) 3.40 % of Rice (Gmm) at N ini 86.80 % of Rice (Gmm) at N des 96.20	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP) 1.29 Tensile Strength Ratio (TSR) 0.00 Effective Sp. Gr. (Gse) 2.79
Wear (L.A. Abrasion) 10.20 Design Volumetric Properties % Voids in Mineral Agg (VMA) N des 14.80 % Voids filled with Asphalt (VFA) N des 77.00 % Voids in Mix @ N design (VTM) 3.40 % of Rice (Gmm) at N ini 86.80 % of Rice (Gmm) at N des 96.20 % of Rice (Gmm) at N max	% Binder in RAS Bulk Sp. Gr. @ N design (Gmb) 2.46 Dust/Asphalt Ratio (D/A) 1.10 Dust Proportion (DP) 1.29 Tensile Strength Ratio (TSR) 0.00 Effective Sp. Gr. (Gse) 2.79

Aggregate Gradation/Sieve Size	Coars	se #1 🔻	Coarse #2 🔻	Intermed	. 🔻 🛛 Fii	ne #1 🔻	Fine #2 🔻	Hyd. Lime 🔻	RAP #1 🔻	RAP #2 🔻	RAS 🔻	Blend
Aggregate Percentages		52.000				46.600		1.400				100.000
Aggregate Bulk Sp. Gravs.		2.797				2.696		2.350				0.000
Aggregate Gradation/Sieve S Coars	se #1 🔻	Coarse #2	 Intermed. 	▼ Fir	ne #1 🔻	Fine #2 🔻	Hyd. Lime	RAP #1	RAP #2 🔻	RAS 🔻	Blend 🔻	
Aggregate Absorption	0.500				1.10)0		0.000			0.7	'
Aggregate Effective Sp. Gravs.											2.1	·]

99,999,999.99 70 Enecuve Binder (Pbe)

4.70

Max Sp. Gr. (G mm)

Aggregate Gradation/Sieve S	Coarse #1 🔻	Coarse #2 🔻	Intermed. 🔻	Fine #1 🔻	Fine #2 🔻	Hyd. Lime 🔻	RAP #1 🔻	RAP #2 🔻	RAS 🔻	Blend 🔻
1"	100.000			100.000		100.000				100.00
3/4"	97.900			100.000		100.000				98.90
1/2"	59.100			100.000		100.000				78.70
3/8"	25.800			100.000		100.000				61.40
4M	2.300			96.400		100.000				47.50
8M	2.100			68.000		100.000				34.20
16M	2.000			42.800		100.000				22.40
30M	1.800			27.500		100.000				15.20
50M	1.400			18.600		100.000				10.80
100M	1.000			13.000		100.000				8.00
200M	0.600			9.500		100.000				6.10

- 17. Click Save.
- 18. Click on the Mix Design quick link at the top.
- 19. Select Attachments from the Action Menu.
- 20. Click Select File.
- 21. Browse to the folder and select **MDT-MAT-009_Bituminous_Mix_Design**.
- 22. Click Open.
- 23. Click Save.
- 24. Select Mix Design Summary from the Action Menu.
- 25. After reviewing the data and verifying specifications are met, enter *Todays Date* in the **DMS Approved Date**.
- 26. Click Save.

18. Create a sample record for mix design verification.

Login

Role: LABTECH

Materials > Sample Records

Test Case Steps

- 1. Click on the **Component Action** button in upper righthand corner of screen and select *Add*
- 2. In the **Material Code Name** field enter *mix* and then select *Plant Mix Surfacing Grade* $S \frac{3}{4}$ "
- 3. In the **Sample Date** field select the current date from the calendar popup
- 4. In the Sample Type field select MD Mix Design from the dropdown list.
- 5. In the Acceptance Method field select TEST Test Results from the dropdown list.
- In the Witnessed By ID Name field enter (your last name) then select your name from list.
- 7. Click Save.
- 8. In the Intended Use field enter: 70-28 Mix design verification
- 9. In the District/Area select: BUT Butte
- 10. Click Save
- 11. Select Sample Location Tab
- 12. In the **Sampled From** field enter *Existing stockpiles*
- 13. Click Save
- 14. Select Additional Information Tab
- 15. In the Mix Design Type dropdown list select Superpave Mix Design
- 16. In the Mix Design ID field select 185S01X
- 17. Click Save
- 18. Select **Sources** Tab
- 19. Press the Select Primary Source button and type sterling
- 20. Select Sterling Ranch Pit from the list
- 21. Click on Add to Sample Record

- 22. Select Destination Lab(s) Tab
- 23. Click New
- 24. In the **Destination** box select *Destination Lab*.
- 25. In the Lab Name field enter hel and select Helena Receiving
- 26. Select the Current date and time in the Shipped Date/Time field from the calendar icon.
- 27. Click Save
- 28. Select Contract tab
- 29. Click on the Select Contract Project Items button
- 30. In the **Search** field enter 07817X (where X is your assigned letter)
- 31. Click on Select: All
- 32. Click Save
- 33. Select Tests tab
- *34.* Click on the **Arrow** to the right of the **Assign Tests** button and select *Assign Default Tests*
- *35.* Verify the following tests were automatically added (*SandEquivalent, FinAggAngularity, FlatElongParticles, SGCoarseAgg, SGFineAgg* and *Two-Face Fracture*)
- 36. Click on the Assign Tests button
 - ← →

arrow over to Assign Tests button

- 37. Select the following tests to be run *(LAWear* test by clicking on the **checkbox** to the left. A green checkmark will appear in each box as it is selected.
 - ÷

38.

arrow over to Add Test Runs and Confirm

- 39. Click Confirm
- 40. Verify the tests were added
- 41. Verify the test was added.

19. Create a New Test Equipment Record

Navigation

Reference Data > Test Equipment

Login

Role: LABTECH

- 1. From the Test Equipment Overview action menu select Add.
- 2. The Equipment component opens on the General Tab.
- 3. Click on the Serial Number field an enter 263456[X].
- 4. Click in the **Description** and enter *Gilson T-S-1*.
- 5. From the **Geographic Area** dropdown select *Bozeman*.
- 6. Click on the Lab Unit field type in *Boz* and select *Bozeman Lab*.
- 7. From the Current Assignment dropdown select Bozeman.
- 8. Click in the **Model Number** field and enter *T*-*S*-1.
- 9. Click in the Manufacture Name field and enter Gilson.
- 10. In the Effective Date field click the calendar and select 01/29/2018.
- 11. In Expiration Date field click the calendar and select 01/29/2019.
- 12. From the **Status** dropdown select *Active*.
- 13. Click Save

20. Update a Test Equipment Record

Login

Role: LABTECH

Navigation

Reference Data > Test Equipment

- 1. In the **search** field and enter *Gil*.
- 2. Click in the **Description** and select the record for *Gilson*, **Serial Number** 26345[X].
- 3. In the Status field select a blank value from the dropdown list
- 4. Click Save
- 5. In the Effective Date field click on the calendar and select 03/02/2018.
- 6. In **Expiration Date** field click on the calendar and select 03/29/2019.
- 7. Click Save
- 8. From the **Status** dropdown select *Active*.
- 9. From the Remarks Type dropdown select Equipment
- 10. In the **Remarks** field enter Gilson serial # 26345X has been checked for the following, sieve screens, screen frames, Timer and Hydraulic pump.
- 11. Click Save

21. Inactivate a Test Equipment Record

Login

Role: LABTECH

Navigation

Reference Data > Test Equipment

- 1. In the **Search** field and enter *Gil*.
- 2. Click in the Description and select the record for Gilson, Serial Number 26345[X]I.
- 3. In Expiration Date field click on the calendar and change the date to 03/22/18.
- 4. From the **Status** dropdown select **Inactive**.
- 5. From the Remarks Type dropdown select Equipment
- 6. In the **Remarks** field enter *This Gilson serial* # 123456 due to unrepairable frame failure *is being taken out of service.*
- 7. Click Save.