MONTANA AVIATION SYSTEM PLAN 2012 UPDATE - PAVEMENT CONDITION INDEXES A.I.P. 3-30-0000-010-2012

prepared for:

Aeronautics Division 2630 Airport Road P.O. Box 200507 Helena, Montana 59620-0507 (406) 444-2506

prepared by:

Stelling Engineers, Inc. 614 Park Drive South Great Falls, MT 59405

February, 2013

Page No.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1	Project Description.	. 1-1
1.2	The Pavement Management System	. 1-5
1.3	Scope of Services	. 1-6

CHAPTER 2 PROJECT APPROACH

2.1	Historical Data Collection	
2.2	Network and Sample Definition	
2.3	Pavement Condition Surveys	
2.4	Pavement Condition Index (PCI)	
2.5	PCI Calculations	
2.6	Pavement Families	
2.7	Family Analyses	2-10

CHAPTER 3 RESULTS AND RECOMMENDATIONS

3.1	Family Analysis Curves	
3.2	PCI Predictions	
3.3	System-Wide Pavement Conditions	
3.4	Maintenance Priorities	
3.5	Maintenance Practices	
3.6	Maintenance and Rehabilitation Planning	
3.7	Other MicroPAVER Reports	
3.8	Continued Micropaver Implementation	

CHAPTER 4 AIRPORT REPORT SUMMARIES

4.1	Introduction	-1
4.2	Inspection Report Summaries	-1
4.3	Maintenance Report Summaries	-1
4.4	Inspection Photos	-2
4.5	FAA Form 5320-1	-2
4.6	Reports	-2

APPENDIX

LIST OF TABLES AND FIGURES

TABI	LES P	age No.
1.1	Montana's Pavement Management System - 2009 Update	1-2
2.1	Selection of Minimum Number of Sample Units	2-2
2.2	Example Sample Unit Selection	2-3
2.3	Section Category Criteria	2-9
2.4	Section Properties and Family Assignments	2-12
2.5	PCI vs. Age - Allowable Extremes/Boundaries	2-21
3.1	Summary of PCI Ratings	3-5
3.2	Pavement Projected to Go Subcritical, by Pavement Area	3-14
3.3	Pavement Projected to Go Subcritical, by % of Each Airport's Pavement Area.	3-15
3.4	Percent of Each Airport's Pavement with 2012 Subcritical PCI	3-16
3.5	First Year Localized Maintenance Policies	3-21
3.6	First Year Localized Maintenance Costs	3-22
3.7	Example First Year Repair Consequences	3-22
3.8	Global Maintenance Costs and Consequences	3-22
3.9	Effective Major M & R Priorities	3-22
A.1	Pavement Distresses	
A.2	Sections Omitted from 2012 PCI Survey	
A.3	First Year Repair Consequences	
FIGU	JRES	
1.1	Montana Airports' Pavement Database Map	1-4
2.1	Concrete and Asphalt Pavement Inspection Sheets	2-4
2.2	PCI Calculation Steps	2-6
Famil	ly Life Cycle Curves:	
2.3	ACPL Asphalt Pavements With Less Than 12,500 lb. Load Rating	2-21
2.4	STPA Bituminous Surface Treated Pavements of All Load Ratings	2-22
2.5	ACAH Asphalt Aprons With Higher Than 30,000 lb. Load Rating	2-22
2.6	ACRH Asphalt Runways & Taxiways With Higher Than 30,000 lb.	
	Load Rating	2-23
2.7	ACRML Asphalt RWs & TWs, Load Rating 12,500 to 30,000 lb, 5000	
	or Fewer Ops	2-23
2.8	ACRMU Asphalt RWs & TWs, Load Rating 12,500 to 30,000 lb,	
	Over 5000 Ops	2-24
2.9	ACAM Asphalt Aprons With Load Rating From 12,500 to 30,000 lb	2-24
2.10	PCAA Portland Concrete Cement - All Sections	2-25
2.11	Pavement Life Cycle	2-25
3.1	MicroPAVER PCI Prediction Process	3-3
3.2	System-wide Pavement Condition Ratings	3-12
3.3	Extended Pavement Life Cycle	3-17
3.4	Cost by PCI Assumptions	3-19
A.1	Family Comparisons	

A.2 Pavement Distresses by Causes

ABBREVIATIONS

AAC	Pavement surface type - structural asphalt overlays of asphalt
AC	Pavement surface type - asphalt I bot mix I plant mix bituminous surface course
ACAH	Pavement Family- Asphalt Aprons With Higher Than 30,000 lb. Load Rating
ACAM	Pavement Family- Asphalt Aprons With Load Rating From 12,500 to 30,000 lb.
ACPL	Pavement Family- Asphalt Pavements With Less Than 12,500 lb. Load Rating
ACRH	Pavement Family- Asphalt Runways & Taxiways With Higher Than 30,000 lb.
	Load Rating
ACRML	Pavement Family- Asphalt RWs & TWs, Load Rating 12,500 to 30,000 lb, 5000 or Fewer Ops.
ACRMU	Pavement Family- Asphalt RWs & TWs, Load Rating 12,500 to 30,000 lb, Over 5000 Ops.
Agg	Aggregate / gravel as a manufactured structural layer of a pavement section
AlP	Airport Improvement Program- FAA funding for airport maintenance and construction
APC	Pavement surface type - structural asphalt overlays of concrete
BST	Pavement surface type - bituminous surface treatments <i>I</i> single shot <i>I</i> double shot <i>I</i> triple shot
FAA	Federal Aviation Administration
FAAAC	Federal Aviation Administration, Advisory Circular
FOD	Foreign object debris. Loose material on a pavement surface that could cause aircraft damage
Form 5320-1	FAA-format for an airport pavement map with construction and maintenance history
GA	General Aviation
Global	Maintenance policy applied to the whole pavement (e.g. fog seals, overlays)
Н	High - degree of severity for an asphalt defect
HLNIADO	FAA's Helena Airports District Office
L	Low - degree of severity for an asphalt defect
L&TCR	Longitudinal and transverse cracking
LF	Linear foot (unit of length)
Local	Maintenance policy applied to small sections of a pavement (e.g. crack seal, patching)
М	Medium - degree of severity for an asphalt defect
M&R	Maintenance and rehabilitation
MAD	Montana Aeronautics Division
Major <crit< td=""><td>Reconstruction of a pavement after its condition has dropped below the critical PCI</td></crit<>	Reconstruction of a pavement after its condition has dropped below the critical PCI
Major>Crit	Reconstruction of a pavement before its condition has dropped below the critical PCI
MDT	Montana Department of Transportation
Ν	No degree of severity for an asphalt defect is defined, the defect is either present or
	not
NWM	FAA's Northwest Mountain Region
Ops	Aircraft operations (takeoff or landing)
P-152	FAA designation for compacting native soils
P-154	FAA designation for subbase gravel

ABBREVIATIONS (Cont.)

P-208	FAA designation for basecourse gravel
P-209	FAA designation for crushed basecourse gravel
P-401	FAA designation for plant-mix bituminous pavement (asphalt)
P-403	FAA designation for small quantities of plant-mix bituminous pavement (asphalt) with less testing
P-501	FAA designation for Portland cement concrete surface course
P-609	FAA designation for an application of asphalt binder / emulsion to a pavement surface
PCAA	Pavement Family- Portland Concrete Cement- All Sections
PCC	Pavement surface type - Portland cement concrete
PCI	Pavement condition index
PFC	Porous Friction Course
PREY	Preventative maintenance
RWY	Runway
SF	Square foot (unit of area)
ST	Pavement surface type- bituminous surface treatments / single shot / double shot / triple shot
STA	Station - formatted distance with implied direction used by surveyors
STPA USACERL	Pavement Family- Bituminous Surface Treated Pavements of All Load Ratings U.S. Army Corps of Engineers Construction Engineering Research Laboratory
XX	Indicates an inspection and PCI rating were completed for a pavement previous to its reconstruction

FOREWORD

The Montana Aviation System Plan is an on-going effort to develop and maintain a Pavement Management System for Montana's general aviation airports that was begun in 1988. The pavement management system is designed to be a systematic and objective tool for determining maintenance and rehabilitation needs and priorities for paved surfaces on Montana's general aviation airports. A pavement management system begins with an objective, repeatable method for determining present pavement condition. This project uses the Pavement Condition Index (PCI) developed at the US Army Corps of Engineers Research Lab (USACERL). The PCI is a numerical index from 0 to 100 that describes the pavement's overall structural integrity and operational condition, with 100 assigned to a new pavement with no flaws and zero to a highly degraded pavement. The PCI is based on the types, severities, and quantities of pavement distresses identified during on-site visual inspections.

The PCI is developed by conducting visual inspections of samples of different pavements at each airport and then entering the distress type, quantity, and severity into a database called MicroPaver. The MicroPaver database calculates PCI's by applying various deducts for each type, quantity, and severity of distress. To maintain an accurate and reproducible pavement management system it is important to conduct consistent pavement inspections every time the PCI update is performed (every 3 years). The PCI process includes very good engineering guidance for identifying and measuring distresses. However, most of the distress type and severity classifications require engineering judgment in the field and that opens up the potential for inconsistency of results from past PCI updates. All of the field inspections for the 2012 Update were conducted independent of past inspections using only the distress classification guidance developed by USACERL. Only after the inspections were completed were comparisons performed to past inspections. Because of the subjective classification of distress type and severity, a QAQC process was used to re-evaluate significantly different PCI scores from past inspections and adjustments were made to some distresses to maintain consistency with past PCI scores. Some of the more common revisions that were made during the QAQC process include the following:

- Alligator cracking and block cracking can appear similar in the field. Alligator cracking has a much higher deduct value than block cracking and will significantly lower PCI values in comparison to block cracking.
- Weathering and raveling can be difficult to differentiate. On past inspections, weathering and raveling were recorded as a single distress. These are now recorded separately and it is possible to have both types of distress present in a sample section. Raveling has a higher deduct value that weathering. On most pavements, these distresses affect a large area of the sample sections and can be difficult to accurately measure. Most inspections documented raveling and weathering through visual estimates of the distressed areas.
- The quantity of longitudinal and transverse cracking was measured with a wheel on all inspections. Measuring and recording accurate quantities for each severity of crack in extensively cracked sample sections was difficult. In heavy distressed areas, the most accurate method for measuring cracks was to conduct a combined measurement (total LF of cracking) and then go back and assess the quantity for severity. This method provides for an accurate total quantity but may allow for some engineering judgment on severity.

- Recent fog seal applications will cover or mask various types of distresses that may have been documented on past inspections. Fog seals can obscure evidence of weathering, raveling, oil spillage, and depressions. Many airports inspected on the 2012 Update had fog seal applications completed within the last two years.
- There were several inconsistencies of distresses noted on the 2009 Update that simply were not observed on the 2012 Update, even though no work was performed on the pavement. Often this can simply be the result of inspecting different sample sections that have different distresses. However, there are some instances where there is no apparent explanation for the differences. One of the more significant differences observed was bleeding. There were a few airports that bleeding was documented on the 2009 Update that simply but was not observed on the 2012 Update. One explanation for this could be heavy fog seal applications that puddle bituminous material and give the appearance of bleeding.

In summary, sound engineering judgment was used during the QAQC process on the 2012 Update to maintain consistency with past PCI inspections. Distress types and severity that require engineering judgment were reassessed and compared to past inspection quantities in an effort to maintain consistency in the pavement management system. However, there were often many distresses documented in past inspections that were not duplicated under the 2012 inspections. In this update, if there was no evidence for a certain distress existing, it was not added to the database in an effort to maintain consistency. Therefore there are some instances of significant variation between past PCI's and the current PCI's established under this update. But in all cases of variation, a subjective consideration of the pavement and the PCI value was made to ensure that the PCI value was reasonable given the visual condition of the pavement.

CHAPTER 1 - INTRODUCTION

1.1 Project Description

This project, the 2012 Update to the Montana Aviation System Plan, continues development of a Pavement Management System for Montana's general aviation airports. This is an ongoing process begun in 1988 and updated on a three-year cycle since then. The Aeronautics Division of the Montana Department of Transportation, in coordination with the Federal Aviation Administration, Helena Airports District Office, contracted with Stelling Engineers, Inc. to provide the surveys and analysis required for the on-going development of the State's airport pavement management system.

The pavement management system is designed to be a systematic and objective tool for determining maintenance and rehabilitation needs and priorities for paved surfaces on Montana's general aviation airports. As such, it is intended to provide better information to airport and aviation officials, so that Federal, State, and local resources can be more efficiently allocated toward maintaining and improving airport pavements. The Pavement Condition Index (PCI) provides a dependable scale for comparing the existing operational condition and structural integrity of airport pavements. The pavement management system's PCI provides a rational basis for justifying pavement replacement or rehabilitation projects. It can also provide feedback on pavement performance to validate or revise pavement design, construction, and maintenance procedures.

The project consists of airport pavement records updates, map updates (FAA Form 5320-1), pavement condition surveys, PCI calculations, PCI analyses, PCI predictions, maintenance suggestions, and maintenance budget projections. This final report documents work completed, assesses system-wide conditions and potential, and recommends work for future updates to the pavement management system. Inspection results, PCI values, predictions, maintenance suggestions, and brief interpretation of the results are provided directly to the sponsor for each airport. Results will be provided in electronic format to Montana Aeronautics Division for posting on the MDT web site.

Airport maps and pavement records (FAA Form 5320-1) were updated in digital format for fiftyseven (57) airports. These airports also had intensive field inspections of pavement samples, collecting data to estimate current and future airport conditions. Pavement deterioration at all fifty-eight (58) general aviation airports in Montana's database were forecast at 1-, 5-, and 10years using the Pavement Condition Index.

Field surveys were performed in accordance with the criteria specified in Federal Aviation Administration (FAA) Advisory Circular AC 150/5380-6B "Guidelines and Procedures for Maintenance of Airport Pavements". Calculations, analysis, and predictions were completed using the U.S. Army Corps of Engineers Construction Engineering Research Laboratory's (USACERL) "MicroPAVER" software system (versions 5.3.2 through 6.5.2).

Table 1.1 and **Figure 1.1** show the airports surveyed and analyzed in this project.

Airport (Database Branch Number)	2012 Inspection Report	2012 Inspection Photos	FAA Form 5320-1 Update	PCI Predict
Anaconda Airport (09)	X	X	Х	X
Baker Airport (56)	Х	X	Х	Х
Benchmark Airport (11)				Х
Big Sandy Airport (18)	Х	X	Х	Х
Big Timber Airport (25)	Х	X	Х	Х
Broadus (62)	X	X	Х	X
Chester, Liberty County Airport (15)	Х	Х	Х	Х
Chinook Airport (58)	Х	Х	Х	Х
Choteau Airport (19)	Х	Х	X	X
Circle, McCone County Airport (38)	Х	Х	Х	Х
Colstrip Airport (48)	Х	Х	X	Χ
Columbus (59)	X	X	Х	Х
Conrad Airport (46)	Х	X	Х	Х
Culbertson Airport, Big Sky Field (34)	Х	X	Х	Х
Cut Bank Airport (13)	Х	X	Х	Х
Deer Lodge City-County Airport (08)	Х	X	Х	Х
Dillon Airport (52)	Х	Х	Х	Х
Ekalaka Airport (57)	Х	X	Х	Х
Ennis Big Sky Airport (50)	Х	X	Х	Х
Eureka Airport (54)	Х	Х	Х	Χ
Forsyth Airport, Tillit Field (43)	Х	X	Х	Х
Fort Benton Airport (60)	Х	X	Х	Х
Gardiner Airport (64)	Х	X	Х	Х
Glasgow International Airport (31)	X	X	Х	X
Glendive, Dawson Community Airport (40)	Х	X	Х	Х
Hamilton, Ravalli County Airport (06)	X	X	Х	X
Harlem Airport (17)	X	X	Х	X
Harlowton, Wheatland County Airport (22)	X	X	Х	X
Havre City-County Airport (16)	X	X	Х	Х

TABLE 1.1MONTANA'S PAVEMENT MANAGEMENT SYSTEM - 2012 Update

Airport (Database Branch Number)	2012	2012	FAA	PCI
- · · · · · · · · · · · · · · · · · · ·	Inspection	Inspection	Form	Predict
	Report	Photos	5320-1	
			Update	
Jordan Airport (37)	X	<u>X</u>	X	X
Laurel Municipal Airport (27)	X	X	Х	X
Lewistown Airport (21)	X	<u>X</u>	Х	X
Libby Airport (01)	X	X	Х	X
Lincoln Airport (12)	X	X	Х	X
Livingston Airport (24)	X	X	Х	X
Malta Airport (61)	Х	X	Х	Х
Miles City Airport, Frank Wiley Field (42)	Х	Х	Х	Х
Plains, Penn Stohr Field (63)	Х	Х	Х	Х
Plentywood, Sherwood Airport (36)	Х	Х	Х	Х
Polson Airport (03)	Х	Х	Х	Χ
Poplar Airport (65)	X	X	Х	X
Ronan Airport (53)	X	Х	Х	X
Roundup Airport (47)	X	X	Х	X
Scobey Airport (35)	Х	X	Х	X
Shelby Airport (14)	X	X	Х	X
Sidney-Richland Municipal Airport (39)	X	X	Х	Х
Stanford Airport (20)	X	X	Х	Х
Stevensville Airport (05)	X	X	Х	Х
Superior, Mineral County Airport (04)	X	X	Х	X
Terry Airport (41)	X	X	Х	Х
Thompson Falls Airport (02)	X	X	Х	Х
Three Forks Airport (49)	X	X	Х	Х
Townsend Airport (55)	X	X	Х	X
Turner Airport (29)	X	X	Х	X
Twin Bridges Airport (51)	X	X	Х	X
West Yellowstone Airport (10)	X	X	Х	X
White Sulphur Springs Airport (23)	X	X	X	X
Wolf Point Airport (32)	X	X	Х	X

TABLE 1.1 (contd.)MONTANA'S PAVEMENT MANAGEMENT SYSTEM - 2012 Update

FIGURE 1.1 MONTANA AIRPORTS' PAVEMENT DATABASE MAP

1.2 The Pavement Management System

A pavement management system begins with an objective, repeatable method for determining present pavement condition. This project uses the Pavement Condition Index (PCI) developed at the US Army Corps of Engineers Research Lab (USACERL). The PCI is a numerical index from 0 to 100 that describes the pavement's overall structural integrity and operational condition, with 100 assigned to a new pavement with no flaws and zero to a highly degraded pavement. The PCI is based on the types, severities, and quantities of pavement distresses identified during on-site visual inspections.

A computerized database called MicroPAVER is used to store, manipulate, and present data that generates PCI values. This program was developed at USACERL specifically for use with the PCI. The MicroPAVER system is continually being improved and upgraded by Engineered Management Systems Software and is periodically reissued in a new version. Montana's pavement management system typically uses the most recent release of the software. The newer software has strived to enhance analysis and reporting tools, refine analysis routines, and improve the operator-computer interface. The current upgrade is a Windows-based program with reasonably easy data transfer and query routines. For this report MicroPAVER output was refined and supplemented using Microsoft Word and Microsoft Excel to improve readability and formatting.

As with any pavement management system, the following tasks are required to adequately document the process, obtain the required field data, and generate meaningful results.

- \rightarrow Assemble background data about the pavements to be studied.
- \rightarrow Prepare and update base maps, define the study areas.
- → Conduct field inspections.
- \rightarrow Process the field inspection and background data.
- \rightarrow Analyze the data and generate appropriate reports.

The process begins with reviewing airport records to locate the pavements to be studied. Background information such as materials, thicknesses, construction dates, primary use (runway/taxiway/apron), surface area, and related data is assembled. This data is then used to divide pavements into a successively refined network by geographic location, functional use, consistency of characteristics, and manageable inspection size.

Each airport is considered a separate "zone" in Montana's airport database. Each zone (airport) is then divided by function or primary use into "branches." All aprons are grouped into a single branch, all taxiways into another branch, and each runway is placed in a separate branch. Branches are further divided into "sections" with similar characteristics. Each section is defined as a pavement of consistent age, construction materials, and maintenance history. Finally, since sections are generally still large pavement areas, each is divided as evenly as possible into "sample units." This last division of asphalt-surfaced areas into near 5,000 square foot samples, and concrete-surfaced areas into near 20 slab samples is designated for convenient, manageable, and statistically valid pavement inspection.

After obtaining background information and dividing the pavements into zones, branches, sections, and sample units, the database network is created and base maps are drawn to document this network structure. FAA Forms 5320-1, "Pavement Strength Survey" are revised and used as guides during field surveys. Base map layout is confirmed (or adjusted) on-site during visual pavement inspection.

As field inspections are completed, distress data is loaded into the MicroPAVER program. Pavement Condition Indexes are calculated providing a numerical rating of present condition by section. Sections are grouped by similar construction, strength, and primary use into "families" of pavements which should experience similar wear, deterioration, and useful lives. The PCI history of all pavements in a family are used to generate a pavement life cycle curve which can then be used to forecast PCI's for all member pavements in the family.

Finally, when the desired analyses have been completed, numerous reports can be generated to describe the pavement systems, their existing conditions, their approximate future conditions, and potential costs to improve performance and extend pavement life.

1.3 Scope of Services

The scope of services required for this phase of the pavement management system development consist of the following:

- Collecting and updating airport geometric and pavement condition information for fifty seven (57) airports, excluding the following sections: Baker (R-1), Benchmark (R-1, R-2A, R-2B, T-1, A-1A, A-1B), Cut Bank (R-1), Glasgow (R-2, R-3), Laurel (R-2, R-3), Livingston (R-1, R-2) and Malta (R-1);
- → Updating base maps (FAA Form 5320-1) for the 57 airports whose pavement information has been reviewed. These maps are produced in AutoCAD and transferred to the more readily accessible Adobe PDF format. These maps are provided in hard copy and digital formats, for continued use in pavement management system updates;
- → Define pavement zones, branches, sections, and sample units for any reconstruction, or new construction of airside pavements.
- ✤ Conduct visual condition surveys at 57 general aviation airports located throughout the State of Montana, load the survey data into MicroPAVER, and obtain current PCI values for each section;
- → Develop "Family Analysis Curves" to model pavement performance by comparing similar pavements to one another. Predict future pavement conditions by using the Family Analysis Curves.
- → Updating the State's MicroPAVER database, analyzing pavements, and producing summary reports for each airport studied;
- → Delivering ten copies of a final report, organized and bound in a three-ring binder with cover graphics, table of contents, and appendices;
- ✤ Mailing pavement analysis results and recommendations for individual airports directly to airport managers.

CHAPTER 2 PROJECT APPROACH

Work on this project began with a review of the report produced for the Montana Aviation System Plan Update in 2009. That project provided the most recent update for the pavement management system. Since consistency is extremely important to periodic pavement condition surveys, the pavement definitions, naming conventions, and recommendations from previous studies were incorporated into this project to the extent possible.

2.1 Historical Data Collection

Airport construction information was collected for airports within the project scope that received FAA Airport Improvement Program (AIP) funds in fiscal years 2009-2012. Pavement information was reviewed and updated for construction since 2009 for each of the study airports. This information was obtained from airport layout plans (ALP), construction plans, FAA Form 5320-1, design reports, the 2012 Montana Airport Facility Directory, airport sponsors, and in some cases, directly from the engineer in charge of construction. When available records did not agree with completed construction, our inspection teams collected as-built dimensions in the field to update maps and sample sections.

All of the information obtained was used to prepare and/or update schematic maps for each airport, using FAA Form 5320-1 as a base. The maps show pavement locations, dimensions, compositions, and dates of construction.

2.2 Network and Sample Definition

Each airport's pavement network consists of the primary paved areas that the Owner is responsible for maintaining. In each case, the airport's pavement network was assigned to a zone. It was then divided into branches (facilities), sections (features), and sample units as defined by MicroPAVER procedures and those of the FAA Advisory Circular, AC 150/5380-6B, "Guidelines and Procedures for Maintenance of Airport Pavements". It should be noted that MicroPAVER and this report use the terms "branch" and "section", while the FAA procedures refer to these as "facility" and "feature".

Once the updated base maps depicting the location of sections and sample units were prepared, the minimum number of sample units (n) that needed to be surveyed to obtain an adequate estimate of the section PCI was determined. The required number of sample units was estimated using the same procedures established in prior PCI updates to maintain consistency with past inspections. This is reproduced here in **Table 2.1**. The number of sample units selected provides for a 92% probability that the estimate of the mean section PCI is within +/- 5 points of the true mean PCI.

At least one sample more than the NWM recommendation was inspected on each runway section. This provided additional accuracy for the sections most likely to drive airport maintenance or improvement projects. The increased sampling density usually generated one sample overlapping the most recent previous survey to aide in verifying consistent inspection techniques.

FLEXIBL	E PAVEMENT	RIGID	PAVEMENT	
N=1	n=1	N=1	n=1	
N=2	n=2	N=2	n=2	
N=3-6	n=3	N=3-4	n=3	
N=7-13	n=4	N=5-6	n=4	
N=14-38	n=5	N=7-8	n=5	
N>38	n=6	N=9-11	n=6	
		N=12-14	n=7	
		N=15-19	n=8	
		N=20-27	n=9	
		N=28-38	n=10	
		N=39-58	n=11	
		N=59-104	n=12	
		N=105-313	n=13	
		N>313	n=14	

TABLE 2.1SELECTION OF MINIMUM NUMBER OF SAMPLE UNITS92% Confidence Level

N = Number of sample units in a pavement section or feature

 $(\pm 5,000 \text{ square feet per sample unit for asphalt pavements}, \pm 20 \text{ slabs for Portland Cement Concrete pavements})$

n = Number of sample units to be surveyed

Reference: Northwest Mountain Region handout, "Pavement Condition Survey Program", (6/11/88 HLN/ADO)

After the number of sample units to inspect was determined, sample units to inspect were selected using "systematic random sampling". The method is described here, followed by an example in **Table 2.2**.

- 1) All the sample units within a section are numbered consecutively.
- 2) The sampling interval (I) is computed with the equation I=N/n, where N = total number of sample units in a section, n = the minimum number of sample units to be surveyed (from Table 2.1). The sampling interval (I) can be rounded up or down to a whole integer.
- 3) The first sample unit, is selected at random from numbers 1 through sampling interval (I).
- 4) Sample units to be inspected are identified as s, s+I, s+2I, s+3I, etc.. through the entire sample.

Sample units were selected before arriving at the site and inspections were conducted on the preselected sample units to avoid biasing the sample. In some cases systematic random sampling was not used either due to a decidedly "non-random" interaction of sample numbers and systematic survey points that concentrated sampling in a small area, or due to an effort to sample previously unsampled areas. The Anaconda example below illustrates the most common sample selection variations. Runways 16-34 and 4-22, designated "R-1" and "R-2" respectively, have few previously sampled areas, so the recommended systematic random sampling is used.

Standard systematic random sampling is also used for T-1 in 2012. A variant "paired sample" systematic random sampling was used on taxiway T-1 in 2006 to pick-up several samples with no historical inspection. Sections A-1 and A-2 also had samples selected by systematic random sampling but were then evaluated and modified if necessary to ensure sampling provided a good geometric distribution. On aprons and other areas where some locations may see much more wear than others, it is more important to get a good geometric distribution of samples, than to get a numerically random sampling.

TABLE 2.2EXAMPLE SAMPLE UNIT SELECTION

Section Number	Total # of Sample Units (N)	Minimum # of Units to Inspect* (n)	Sample Spacing** (I=N/n)	Random Start # (s)	Sample Units to Survey (s,s+i,s+2i,etc)	Actual Sample Units Surveyed
R-1	92	$6 + 1 = 7^{\dagger}$	13 Or 14	14	14,27,40,53,66,79,92 Or 14,28,42,56,70,84,98	14,28,42,56,70,84,98
R-2	50	$6 + 1 = 7^{\dagger}$	7 Or 8	7	7,14,21,28,35,42,49 Or 7,15,23,31,39,47,55	7,14,22,30,38,46,54
T-1	20	5	4	2	4,8,12,16,20 Or 4,5,9,10,16,17 (variant used in '06)	4,8,12,16,20
A-1	9	4	2 Or 3	1 1	1,3,5,7 Or 1,4,7,10 (along one edge - not used)	1,3,5,7
A-2	17	5	3 Or 4	1	1,4,8,11,14 Or 1,5,9,13,17	1,4,9,14,17

ANACONDA AIRPORT

* Table 2.1, or engineer's judgment

** Rounded up or down to a whole number

[†] Stelling Engineers, Inc. engineers chose to increase sampling frequency by 1 on all runways, to provide a higher probability of an accurate PCI assessment on this most critical airport pavement.

	DATE DISPECTED	SECTION LENGTH		 Struitbage Cracks Synthega Joints- K. Spatinga Joints- 	T6. ASR	Skelch / Lonments								Skelch / Comments								
INSPECTOR NAME	BRANCH USE	SECTION MIDTH MUMBER OF	SLABS	69. Pumping 70. Scaling	72. Shutthered Stath																	
			GTH	Seal Damage ng, Small		SAMPLE								swere	. H.							
			SLAB LEN	65. Joint 7 68. Patch	58. Popos	an cover								NI SRYIS	16. 1							
0H	FROM	10	HIDTH SLAB WIDTH	61. Bioway 62. Corner Break	64. Dwabley Crack-	SAMPLE NUMBER	00111239 CODE							SAMPLE NUMBER	DISTRESS CODE							
																1.000	I					
		DATE INSPECTED	INSTELLED	ENGTH	Swell	Weathering			IS							5						
			-	0 -	19	10			ommer							AREA					- 1	
					te 56.	21			Sketch / Commer						00.9%	SAMP	L.		_			
	INSPECTOR	BRANCH USE	USE	SECTION WIDTH	51. Polished Aggregate 56.	52. Raveling 57.	53. Rutting	54. Shoving From PCC 55. Slippage Cracking	Sketch / Commer							SAMPLE SAMP NUMBER AREA	DISTRESS CODE L					
	INSPECTOR	BRANCH USE	C36	SECTION WIDTH	Ac ourieved planess courses 51. Polished Aggregate 56.	CC) 52. Raveling 57.	Cracking 53. Rutting	54. Shoving From PCC 55. Stippage Cracking	Sketch / Commer	I						SAMPLE SAMP NUMBER AFEA	H DISTRESS CODE L					
	INSPECTOR	BRANCH USE	026	SECTION WIDTH	46. Jet Blast 51. Polished Aggregate 56.	47. Jt. Reflection (PCC) 52. Raveling 57.	48. Long. & Trans. Cracking 53. Rutting	49. Oli Spillage 54. Shoving From PCC 50. Patching 55. Slippage Cracking	Sketch / Contrate AREA	1						SAMPLE SAMP AREA NUMBER AREA	N H DISTRESS CODE L					
	INSPECTOR	BRANCH	026	SECTION WIDTH	ng 46. Jet Blast 51. Politshed Aggregate 56.	47. Jt. Reflection (PCC) 52. Raveling 57.	48. Long. & Trans. Cracking 53. Rutting	49. Oli Spillage 54. Shoving From PCC 50. Patching 55. Slippage Cracking	SAMPLE Sketch / Commenter AREA	I I						SAMPLE SAMPLE SAMP AREA NUMBER AREA	L N H DISTRESS CODE L					

FIGURE 2.1 AIRFIELD INSPECTION FORMST

The airport base maps (FAA Form 5320-1) show the sections and sample units defined for each airport. Sample units selected for evaluation in the various project years are marked with different hatch patterns as shown in the map legend. Sample units selected for evaluation in the 2012 Update are marked with a heavy honeycomb-hatch.

2.3 Pavement Condition Surveys

Visual condition inspections were conducted in general accordance with the procedure outlined in Appendix A of the FAA Advisory Circular 150/5380-6B, "Guidelines and Procedures for Maintenance of Airport Pavements". Modifications were made in accordance with the Northwest Mountain Region handout, "Pavement Condition Survey Program", (6/11/88 HLN/ADO). This handout proposes the following major changes to the procedure outlined in AC 150/5380-6B.

- 1. The number of pavements to be surveyed was reduced by eliminating T-hangar taxiways and pavement sections smaller than 10,000 square feet.
- 2. The survey confidence level was reduced from 95% to 92%.

Detailed visual inspections were conducted on paved surfaces at each of the airports selected for this project during the period June 2012 through November 2012. The sections defined on base maps were verified, or revised if necessary. Sample units to be surveyed were temporarily marked on the pavement. Visual inspections were conducted measuring types, severities, and quantities of pavement distresses while walking over each selected sample unit. Distresses were recorded on inspection sheets like those shown in **Figure 2.1**. Individual pavement distress types and severities were identified using Chapter 3 of the FAA Advisory Circular 150/5380-6B and USACERL generated PCI Field Manuals for asphalt surfaced airfields and jointed concrete airfields. Photographs documenting overall condition and/or specific distresses were taken during the field surveys and are included in Chapter 4. Sample selection strives to select "representative" areas, but photos were often selected to show extreme (and possibly atypical) distresses.

After consulting with M. Y. Shahin, MicroPaver's lead development engineer, two adjustments to previous field inspections were initiated beginning in 2000. Alligator cracking within one foot of the pavement edge was recorded as longitudinal cracks, and distresses recorded as "block cracking" in 1997 were reduced to longitudinal /transverse cracks. On larger airports, sections can be chosen to separate runway edge conditions from the center with separate PCI's produced for heavily used center and seldom used edges. With smaller GA airports, it's impractical to subdivide runway width, so edge failure can drive the PCI of a runway significantly below what its center section would warrant. Down-grading the type of distress recorded for edge failure better represents the quality of the commonly used portion of the pavement. Large, rectangular blocks seen on a few of Montana's airports were judged to be just off the block cracking continuum, and recording them as such was excessively harsh on the section PCI. These two changes brought Montana's pavement management system more in line with MicroPaver's empirical research.

Figure 2.2 **PCI Calculation Steps** STEP 1. DIVIDE PAVEMENT SECTION INTO SAMPLE UNITS **STEP 2. INSPECT SAMPLE UNITS, DETERMINE DISTRESS** TYPES AND SEVERITY LEVELS AND MEASURE DENSITY. Medium Alligator Light Lateral & Transverse Cracking STEP 3. DETERMINE DEDUCT VALUES L&T Cracking Alligator 100 100 н н M DEDUCT VALUE N DEDUCT VALUE 0 0 DENSITY PERCENT 0.1 100 0.1 **DENSITY PERCENT** 100 (Log Scale) (Log Scale)

STEP 4. COMPUTE TOTAL DEDUCT VALUE (TDV) a+b

STEP 5. ADJUST TOTAL DEDUCT VALUE

STEP 6. COMPLETE PAVEMENT CONDITION INDEX (PCI) 100-CDV FOR EACH SAMPLE UNIT INSPECTED STEP 7. COMPUTE PCI OF ENTIRE SECTION (AVERAGE PCI'S OF SAMPLE UNITS). STEP 8. DETERMINE PAVEMENT CONDITION RATING OF SECTION

Source: USACERI Technical report M-90/95, July 1990, Paver Update, "Pavement Maintenance Management for Road & Streets Using the Paver System," by M.Y. Shanin & J.A. Walther, P41.

Another change which has occurred for the 2012 Update is an update to ASTM standards on two surface distresses. The prior AC distress Weathering and Raveling (52) has been updated to be two separate distresses: Raveling (52) and Weathering (57). As a result of this change weathering (wearing out of fine aggregate) is recorded separately from raveling (the loss of large aggregate). Weathering has a much lower value deduct curve than raveling so it should be expected that this change will result in higher PCI's for pavements with weathering distresses. The other ASTM update is the division of PCC distress Scaling (70) into two separate distresses: Scaling (70) and ASR (76).

2.4 Pavement Condition Index (PCI)

The pavement condition index (PCI) is an objective, repeatable numerical rating or "grade" that describes the overall condition of a pavement section on a scale of 0 (failed pavement) to 100 (perfect pavement). It is based on visual inspections of manageable sample pavement areas for types, severities, and quantities of a number of specific distresses. "Field verification of the PCI inspection method has shown that the index gives a good indication of a pavement's structural integrity and operational condition. It has also been shown that, at the network level, the observation of existing distress in the pavement provides a useful index of both the current condition and an indication of future performance under existing traffic conditions."¹

2.5 PCI Calculations

The PCI is produced for each surveyed sample unit with a series of calculations using the area of the sample and quantities of standard distress types as summarized in Figure 2.2. Pavements are divided into manageable sample areas and a random selection of these are intensively inspected (Figure 2.2, Step 1). Quantities of standardized distress types (descriptions and example photos in Appendix B) and severities are recorded during visual inspections by trained inspectors (Figure 2.2, Step 2). Quantities divided by the sample area give distress density for each type and severity of distress present. Distress densities are transferred to deduct values using composite curves generated from US Army Corps of Engineers pavement research (Figure 2.2, Step 3). The total deduct value is the sum of deducts due to individual distress types and severities (Figure 2.2, Step 4). To reflect the empirical fact that numerous minor defects are not as detrimental to a pavement's condition as a few major defects, this total deduct is scaled back when there are a large number of deducts recorded (Figure 2.2, Step 5). The Pavement Condition Index (PCI) is simply a perfect 100 pavement less the adjusted total deduct value (Figure 2.2, Step 6). The area-weighted average of the sample PCI's is taken as the section PCI (Figure 2.2, Step 7). There are seven discrete groupings of PCI values that describe the overall pavement quality with Pavement Condition Ratings (Figure 2.2, Step 8). The new version of MicroPAVER allows user-defined rating titles & ranges, and suggests that only PCI's above 55 are acceptable, with sub-55 PCI's rated as "poor" to "failed."

In addition to extrapolating PCI's from selected sample areas to larger sections of pavement, distress densities, distress quantities, and deducts are extrapolated for each section and included in the Inspection Report Summary. Extrapolated distress densities are the sum of distress

¹USACERL Technical Report M-90/05, July 1990, Paver Update, "Pavement Maintenance Management for Roads and Streets Using the PAVER System," by M. Y. Shahin & J. A. Walther, p40.

quantities divided by the sum of the sampled areas. Distress densities are both scaled up by the section area to get extrapolated distress quantities, and also fed into the deduct curves to get extrapolated deducts for the section.

While these calculations can be completed by hand, the vast quantity of data collected for Montana's general aviation airports makes it much more feasible to use the MicroPAVER software package developed by USACERL expressly for PCI calculations. PCI's in this report were produced with MicroPAVER 6.5.2 for Windows.

2.6 Pavement Families

In order to make sound management decisions, it is necessary to project the future condition of a pavement rather than just the present condition represented by the PCI. Comparing the eight airport pavement surveys spanning the last twenty-one years, it is apparent that a pavement's PCI degrades over time. By grouping pavements with similar properties, it is possible to distill an "average" behavior for the group. The MicroPAVER system calls groupings of like pavements "families." The intent is that grouped pavements will tend to perform similarly as they age. If this grouping is performed successfully, documented behavior of older pavements can be used to project probable behavior for younger pavements as they age. In other words, pavements within the same family should have PCIs that are roughly the same when their ages are the same. The choice of what properties, and ultimately which pavements are used to build a family are determined by the engineer. The number of family's needs to be sufficiently large to cover different pavement types while preserving a statistically significant data set from the available survey data.

The database of Montana airports was configured in 1991 for sorting of families by parameters: surface type, primary use, pavement strength, rank, and asphalt thickness to total thickness ratio. In 1997 the medium strength asphalt runways were split into two families by approximate usage, or "operations count".

Surface types include: asphalt (AC), structural asphalt overlays of asphalt (AAC) or concrete (APC), bituminous surface treatments (ST), and Portland cement concrete (PCC). Concrete pads at the surface were designated "PCC," while those overlaid with asphalt were labeled "APC." When a pavement contained 1-inch or more of screed-applied asphalt cement coated aggregate it was called "AC," unless it was upgraded to an asphalt overlay of asphalt (AAC) by being overlaid with 1-inch or more of AC or with greater than 1-inch of porous friction course (PFC). Single-, double-, and triple-shot surfaces were designated as surface treatments (ST). These bituminous surface treatments (BST) were upgraded to structural strength similar to asphalt and called "AC" when overlaid with 1-inch or more of P-401, or with greater than 1-inch of porous friction course (PFC).

Primary uses for airport pavements are aprons, runways, and taxiways. Sections were assigned as "Apron", "Runway", or "Taxiway" based upon their use, and designated on FAA form 5230-1.

Pavement strengths are split into single axle loads of less than 12,500 pounds, 12,500 pounds up to and including 30,000 pounds, and over 30,000 pounds (light, medium, and heavy). Asphalt to

total pavement section thickness ratio is set at less than 30%, between 30% and 70% inclusive, and over 70%. Design strength and asphalt thickness/total thickness ratio were encoded into a single character and stored into the database "Section Category" and updated for new construction. While asphalt thickness to total thickness ratio was not used in the final analysis of this report, it facilitated exploration of potential family groupings and could be used in future projects, so was not removed from the database. Pavement sections were assigned to one of ten section categories based on information shown on existing FAA Form 5320-1 for each airport. Unspecified P-609's (BST) were assumed to be double shots and assigned a nominal thickness of 1-inch. Bituminous surface treatments (BST) and porous friction coats (PFC) were given credit for only half their nominal thickness in equivalent asphalt depth. **Table 2.3** presents the section categories used and the requirements for each.

Section	AC/Total Depth	Design Strength
Category	Ratio	(Single Wheel Load)
A	< 30%	< 12.5K
В	30% - 70%	< 12.5K
С	> 70%	< 12.5K
D	< 30%	12.5K - 30K
E	30% - 70%	12.5K - 30K
F	> 70%	12.5K - 30K
G	< 30%	> 30K
Н	30% - 70%	> 30K
Ι	> 70%	> 30K
Р	PCC, non-asphalt surface	

TABLE 2.3SECTION CATEGORY CRITERIA

"Rank" is used to describe a pavement's status in the database and its use on the airfield. Current database members that remain in use on the airport are designated with an "O". Non-federally funded, abandoned, or demolished pavements are labeled with a rank of "N" or "A". Those sections excluded from inspections and the database by contractual agreement are ranked "E". Only pavements with a rank of "O" were included in the 2012 update calculations and reports, dropping data for abandoned pavements from the era before preventative maintenance. Ranking could be used to prioritize funding allocation to heavy use airfields over lighter use fields, or to apply external budget priorities to maintenance and rehabilitation planning.

In 2000, medium strength runway/taxiways were subdivided by operations estimates into those having 5,000 or fewer annual operations (L), and heavy use strips averaging over 5,000 ops (U). This separation into "light use" versus "busy" was explored with other groupings, but each lacked sufficient samplings (mostly of older pavements) to produce reliable forecasting. Operations estimates were updated using 2012 FAA 5010-1 forms and rounded to the nearest thousand up to fifteen thousand, then to the nearest 5,000 for annual estimates exceeding 15,000.

In 2006, the two families of surface treatment pavements were combined, as were the two primary usages associated with low strength pavement. There were no longer enough pavements in these dwindling families to produce statistically significant groups, nor to require separate estimations.

While a number of other parameters are currently available in the database, few if any would be reasonable sort criteria. There are user definable fields for refining or redefining families as the available data set grows and it becomes possible to use additional delimiters such as "Maintained" vs. "Unmaintained," or "Harsh", "Moderate", "Minimal" to describe freeze-thaw cycle exposure at the site.

2.7 Family Analyses

Families were assigned according to surface type, primary use, design strength (using section category values), and operations counts. These selection criteria made the most sense and produced results that fit well with common engineering judgment and measured data. Numerous grouping variations were explored with inferior results. Retaining the majority of the families used in earlier years allows meaningful comparisons with previous surveys. Family curves for all PCI system plans since 1991 are included in the appendix. The following eight families were defined, and are coded to indicate the combination of selection criteria used for each.

FAMILY NAMES: ACPL, ACAM, ACRML, ACRMU, ACAH, ACRH, STPA, PCAA

FAMILY NAME CODING:

```
1st two letters = surface type
AC = all asphalt cement pavements
PC = all Portland cement pavements
ST = surface treatment
3rd letter = primary use
A = aprons
R = runways and taxiways
P = all primary uses (aprons, runways, and taxiways)
4th letter = design strength
A = all strengths
L = low strength (< 12.5K, single wheel)
M = medium strength (> 30K, single wheel)
H = high strength (> 30K, single wheel)
```

5th letter = operations count (where applicable)

- L = light use (< 5000 annual estimated operations)
- U = busy (over 5000 annual estimated operations, or more than 1 op./daylight hour)

While there is scatter in the data that PCI families are based on, it is well within the limits expected from nearly sixty airports spread across a wide geographic region, with varying traffic loads and maintenance practices. While maintenance is great for airport pavements, the inspections that follow produce an upward spike in the pavements' "life cycle curve." These increases in PCI's over historical values create a certain amount of unavoidable "scatter" in the

data. Likewise, a fog coat or crack sealant will likely age much more quickly than the original pavement; this steeper rate of decline also generates data scatter. There are a few pavement sections that exhibit an increase in successive PCI's, as well as a few with precipitous drops due to failed sealant or a transition from "cracking" to "alligator cracking". To compensate for the scatter we must realistically expect from the variations in the airport system, the database of accumulated PCI inspection results is statistically "screened." Six of the eight families used in this analysis are created from 90% of the available data, the remaining "outliers" are plotted but are not used to generate the family curve; the two most populous data sets ACRML and ACRMU screen only 1% of the outliers and allow for a maintenance "bump" in the data.

Pavement sections that are at the extremes of the pavement performance spectrum were removed from the data set used to construct the representative family curves. The engineer established a "boundary" of theoretical best and worst possible pavement life cycles to filter out abnormal pavement wear and maintenance spikes. **Table 2.5** shows the typical boundary filter for asphalt pavements. A combination of factors may conspire to rapidly degrade a specific pavement -- excess moisture destabilizing the subgrade, poor construction practices, abuse, or overloading, Another branch could have all the luck (and care) - solid subgrade, conscientious construction, light usage, wintering the freeze-thaw cycles under an insulating blanket of snow. Uncommon PCI's are filtered out with best- and worst-case scenario boundaries. Occasionally, a section or two may be removed from the family construction due to the engineer's determination of irregular circumstances.

Table 2.4 on the following pages summarizes pavement section data from FAA 5320-1 forms, uses it to assign section categories and surface types, and then determines the family assignment for each section in the Montana airports database. This table has been updated to include approximate annual operations counts and documents the use of geotextiles in the pavement section. Table 2.4 includes all the information used to construct family groups, and additional data that was considered for new groupings.

MicroPAVER gives the user great flexibility in defining families. The user is also free to redefine families at any time, since family definition plays a very important part in PCI predictions. As the pavement management system continues to develop, better family definitions may become apparent, and they should be revised accordingly.

After families have been defined and each pavement section is assigned to the appropriate family, MicroPAVER generates "Family Analysis Curves." These are PCI verses Age curves derived from a least-squares adjustment of all known observations within the family. Graphically speaking, each time a PCI evaluation of a section is completed, that section's PCI is plotted against its Age, forming a single data point (or observation) on that section's family analysis curve. The model is further constrained by insisting that a pavement cannot improve its condition over time (without outside intervention), so a family curve can never rise in PCI with age. The least squares adjustment then yields a single curve that is most representative of the data. In lieu of better information, the life cycle curve for pavement ages greater than any sampled in the family group is assumed to continue at the same rate of decay as at the last data point. In other words, the PCI predictions follow the straight-line tangent to the curve at the oldest pavement life.

BRANCH NAME (Airport City)	Section	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	(BST)	Surfac Course (Inche (AC)	e e es) (PCC)	((BST)	Dverlay Inches) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 lbs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Anaconda	A-1	5			9		3				9	3	25%	12.5	D	Apron	AC	ACAM
Anaconda	A-2	5			9.7		4				9.7	4	29%	12.5	D	Apron	AC	ACAM
Anaconda	R-1	5			9		3			2.8	9	5.75	39%	16	Е	Runway	AAC	ACRML
Anaconda	R-2	5			9.7		4				9.7	4	29%	12.5	D	Runway	AC	ACRML
Anaconda	T-1	5			9		3			2.8	9	5.8	39%	16	Е	Taxiway	AAC	ACRML
Anaconda	T-1A	5			9		3				9	3	25%	12.5	D	Taxiway	AC	ACRML
Anaconda	T-22	5			9		4				9	4	29%	12.5	D	Taxiway	AC	ACRML
Anaconda	T-4	5			6		2				6	2	29%	30	D	Taxiway	AC	ACRML
Anaconda	T-5	5			9.7		4				9.7	4	29%	12.5	D	Taxiway	AC	ACRML
Anaconda	T-6	5			9		4				9	4	31%	12.5	D	Taxiway	AC	ACRML
Baker	A-2A	7			11		2			5.3	11	7.25	40%	12.5	E	Apron	AAC	ACAM
Baker	A-3A	7	f		6	1	2		1	5.3	6	8.25	58%	4	В	Apron	AAC	ACPL
Baker	A-5	7	f	18	16		4				34	4	11%	12.5	D	Apron	AC	ACAM
Baker	A-6	7	f	22	8			8			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Baker	A-7	7	f	18	16		4				34	4	11%	12.5	D	Apron	AC	ACAM
Baker	A-9	7		18	16		4				34	4	11%	12.5	D	Apron	AC	ACAM
Baker	R-1	7		35	22		4			4	57	5	8%	17.5	D	Runway	AC	ACRMU
Baker	R-2	7		40	10		5				50	5	9%	17.5	D	Runway	AC	ACRMU
Baker	T-1	7			11		2			3	11	5	31%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-2	7			6	1	2			3	6	5.5	48%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-3	7			11		2			4.5	11	6.5	37%	12.5	Е	Taxiway	AAC	ACRMU
Baker	T-4	7	f	18	16		4				34	4	11%	12.5	D	Taxiway	AC	ACRMU
Baker	T-5	7		31	10		4				41	4	9%	12.5	D	Taxiway	AC	ACRMU
Benchmark	A-1A	0			6		3				6	3	33%	45	Н	Apron	AC	ACAH
Benchmark	A-1B	0			6		3				6	3	33%	45	Н	Apron	AC	ACAH
Benchmark	R-1	0			6		3				6	3	33%	45	Н	Runway	AC	ACRH
Benchmark	R-2A	0			6		3				6	3	33%	45	Н	Runway	AC	ACRH
Benchmark	R-2B	0			6		3				6	3	33%	45	Н	Runway	AC	ACRH
Benchmark	T-1	0			6		3				6	3	33%	45	Н	Taxiway	AC	ACRH
Big Sandy	A-1	5						6			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Big Sandy	A-2	5			13		3				13	3	19%	12.5	D	Apron	AC	ACPL
Big Sandy	R-11	5			13		3				13	3	19%	12.5	D	Runway	AC	ACPL
Big Sandy	T-2	5			6		3				6	3	33%	4	В	Taxiway	AC	ACPL
Big Sandy	T-3	5			13		3				13	3	19%	12.5	D	Taxiway	AC	ACPL
Big Timber	A-1	7			4		2.5				4	2.5	38%	12.5	Е	Apron	AC	ACAM
Big Timber	A-2	7			4		2.5				4	2.5	38%	12.5	Е	Apron	AC	ACAM
Big Timber	R-1	7			9.5		2.5				9.5	2.5	21%	12.5	D	Runway	AC	ACRMU
Big Timber	R-2	7			4		2.5				4	2.5	38%	12.5	Е	Runway	AC	ACRMU
Big Timber	T-1	7			4		2.5				4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Big Timber	T-2	7			4	2				2	4	2	33%	12.5	Е	Taxiway	AC	ACRMU
Big Timber	T-3	7			4		2.5				4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Big Timber	T-4	7		30	6		4				36	4	10%	12.5	D	Taxiway	AC	ACRMU
Big Timber	T-5	7		30	6		4				36	4	10%	12.5	D	Taxiway	AC	ACRMU

BRANCH NAME (Airport City)	Sectior	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	Surface Course (Inches) (BST) (AC) (PCC)	Overlay (Inches) (BST) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Broadus	A-1	5		6	4	3.5		10	3.5	26%	12.5	D	Apron	AC	ACAM
Broadus	R-1	5		6	4	3.5		10	3.5	26%	12.5	D	Runway	AC	ACRML
Broadus	T-1	5		6	4	3.5		10	3.5	26%	13.5	D	Taxiway	AC	ACRML
Chester	A-5	5			11	3		11	3	21%	12.5	D	Apron	AC	ACAM
Chester	A-11	5			12	3		12	3	20%	12.5	D	Apron	AC	ACAM
Chester	R-3	5			13	3		13	3	20%	12.5	D	Runway	AC	ACRML
Chester	T-2	5			13	3		13	3	20%	12.5	D	Taxiway	AC	ACRML
Chester	T-3	5			12	3		12	3	20%	12.5	D	Taxiway	AC	ACRML
Chester	T-4	5			12	3		12	3	20%	12.5	D	Taxiway	AC	ACRML
Chester	T-13	5			12	3	2	12	3	20%	12.5	D	Taxiway	AC	ACRML
Chinook	A-1A	9			10	3		10	3	23%	12.5	D	Apron	AC	ACAM
Chinook	A-1B	9			10	3	2	10	5	33%	12.5	E	Apron	AAC	ACAM
Chinook	R-1	9			10	3	2	10	5	33%	12.5	E	Runway	AAC	ACRMU
Chinook	T-1	9			10	3	2	10	5	33%	12.5	E	Taxiway	AAC	ACRMU
Choteau	A-1	3			8	2	1	8	2	20%	24	D	Apron	AC	ACAM
Choteau	R-11	3		6	13	2		19	2	10%	24	D	Runway	AC	ACRML
Choteau	R-12	3	f	5.5	6.5	2		12	2	14%	24	D	Runway	AC	ACRML
Choteau	R-2	3	f	7.5	6.5	3		14	3	18%	24	D	Runway	AC	ACRML
Choteau	T-1	3			12	3		12	3	20%	24	D	Taxiway	AC	ACRML
Choteau	T-2	3	f	7.5	6.5	3		14	3	18%	24	D	Taxiway	AC	ACRML
Circle	A-1	4			8	3		8	3	27%	21	D	Apron	AC	ACAM
Circle	A-2	4		10	4	2		14	2	13%	16	D	Apron	AC	ACAM
Circle	R-11	4		8	8	3		16	3	16%	30	D	Runway	AC	ACRML
Circle	T-1	4		6	13	3		19	3	14%	21	D	Taxiway	AC	ACRML
Circle	T-2	4		12	13	3		25	3	11%	16	D	Taxiway	AC	ACRML
Colstrip	A-1	6			9	3	3.5	9	6.5	42%	12.5	E	Apron	AAC	ACAM
Colstrip	R-1	6			9	3	3.5	9	6.5	42%	12.5	E	Runway	AAC	ACRMU
Colstrip	T-1	6			9	3	3.5	9	6.5	42%	12.5	E	Taxiway	AAC	ACRMU
Colstrip	T-2	6			9	3	3.5	9	6.5	42%	12.5	E	Taxiway	AAC	ACRMU
Columbus	A-1	9	f		13	3		13	3	19%	12.5	D	Apron	AC	ACAM
Columbus	R-1	9	f		13	3		13	3	19%	12.5	D	Runway	AC	ACRMU
Columbus	T-1	9	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Columbus	T-2	9	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Columbus	T-3	9	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Conrad	A-1	4			10	2	2.5	10	4.5	31%	12.5	E	Apron	AAC	ACAM
Conrad	R-3	4	f	8	3	3.5		11	3.5	24%	12.5	D	Runway	AC	ACRML
Conrad	T-4	4			10	2	2.5	10	4.5	31%	12.5	E	Taxiway	AAC	ACRML
Culbertson	A-1	5			8	4.5	4.5	8	3.5	30%	12.5	E	Apron	AC	ACAM
Culbertson	A-2	5			11.5	4.5		11.5	4.5	28%	12.5	D	Apron	AC	ACAM
Culbertson	R-1	5			8	4.5	4.5	8	3.5	30%	12.5	E	Runway	AC	ACRML
Culbertson	R-2	5			8	4.5	4.5	8	3.5	30%	12.5	E	Runway	AC	ACRML
Culbertson	T-1	5			8	4.5	4.5	8	3.5	30%	12.5	Е	Taxiway	AC	ACRML
Culbertson	T-2	5			8	4.5	4.5	8	3	27%	12.5	D	Taxiway	AC	ACRML

Cal Bank A-1 6	BRANCH NAME (Airport City)	Section	Approx. Annual Operations	Geo- Grid / Fabric (g / f)	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	Surface Course (Inches) (BST) (AC) (PCC)	Overlay (Inches) (BST) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Cat Bank R-1 6 T2 5.5 3 1 12 9 4.3% T2.5 E Rumay AAC ACRMUC Cut Bank T-1 6 8 12 1 6 25 1 1 6 2.5 D Taxiway AC ACRMUC Cut Bank T-4 6 9 9.55 1 6 2.5 2.9% 12.5 D Taxiway AC ACRMUC Cut Bank T-5 6 f 11 3 21% 4 4 50% 30 E Taxiway AC ACRMUC Deer Lodge A-3 4 - 6 2.5 1.5 6 4 4 50% 30 E Apron AC ACAM Deer Lodge A-3 4 - 6 2.5 2 6 4.5 4% 5 5% 0 Taxiway AC ACAM	Cut Bank	A-1	6				7		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Cut Bank R-21 6 1 8 12 3 20 3 13% 28 D Furway AC ACRMU Cut Bank T-2 6 6 2 1 6 2.5 28% 12.5 E Taxiway AC ACRMU Cut Bank T-4 6 9 5.5 1 6 12.5 E Taxiway AC ACRMU Cut Bank T-6 6 1 11 3 20% 20 D Taxiway AC ACRMU Deer Lodge A-3 4 - 6 2.5 1.5 6 4 40% 30 E Apron AC ACAM Deer Lodge A-5 4 4 4 50% 30 E Apron AC ACAM Deer Lodge R-4 4 4 50% 30 E Furway AC ACRML Der Lodge <td< td=""><td>Cut Bank</td><td>R-1</td><td>6</td><td></td><td></td><td>12</td><td>5.5</td><td>3 1</td><td>12</td><td>9</td><td>43%</td><td>12.5</td><td>Е</td><td>Runway</td><td>AAC</td><td>ACRMU</td></td<>	Cut Bank	R-1	6			12	5.5	3 1	12	9	43%	12.5	Е	Runway	AAC	ACRMU
Chi Bank T-1 6 8 5 8 5 38% 12.5 E Taxiway AC ACRMU Cut Bank T-4 6 9 9.5 1 6 2.25 29% 12.5 E Taxiway AC ACRMU Cut Bank T-5 6 f 112 3 21% 21.5 D Taxiway AC ACRMU Cut Bank T-6 6 f 12 3 20% 2.0 D Taxiway AC ACRMU Der Lodge A-3 4 - 6 2.5 1.5 4 4 50% 30 E Apron AC ACAM Der Lodge A.5 4 4 50% 30 E Apron AC ACAM Der Lodge R.4 4 4 50% 30 E Rurway AC ACAML Der Lodge T.15 14 4	Cut Bank	R-21	6	f	8	12	3		20	3	13%	28	D	Runway	AC	ACRMU
Cut Bank T-2 6 2 1 6 2.5 2.9% 12.5 D Taway AC ACRMU Cut Bank T-5 6 f 11 3 11 3 21% 12.5 D Taway AC ACRMU Cut Bank T-6 6 f 11 3 21% 12.5 D Taway AC ACRMU Deer Lodge A-3 4 6 2.5 1.5 6 4 40% 30 E Apron AC ACAM Deer Lodge R-3 4 4 4 4 4 4 50% 30 E Apron AC ACAM Deer Lodge R-14 4 4 4 40% 50% 30 E Apron AC ACAM Deer Lodge T-18 4 4 50% 30 E Apron AC ACAM Deer Lodge	Cut Bank	T-1	6			8	5		8	5	38%	12.5	Е	Taxiway	AC	ACRMU
Cut Bank T-4 6 9 9 9.5 1 9 10 53% 12.5 E Taxway AC ACRMU Out Bank T-6 6 f 12 3 20% 20 D Taxway AC ACRMU Der Lodge A-3 4 -6 2.5 1.5 6 4 40% 30 E Apron AC ACAMU Der Lodge A-4 4 4 4 4 4 50% 30 E Apron AC ACAMU Der Lodge R-4 4 4 4 4 50% 30 E Ruway AC ACRMU Der Lodge T-18 4 4 50% 30 E Ruway AC ACAMU Der Lodge T-2 4 10 2.5 20% 12.5 D Taxway AC ACAMU Dilon A-3 11 1	Cut Bank	T-2	6			6	2	1	6	2.5	29%	12.5	D	Taxiway	AC	ACRMU
Cut Bank T-5 6 f 11 3 11 3 21% 12.5 D Taxivary AC ACRMU Dut Bank T-6 6 1 12 3 20% 20 D Taxivary AC ACRMU Der Lodge A-3 4 6 2.5 1.5 6 4 40% 30 E Apron AAC ACAM Der Lodge A-3 4 6 2.5 2 6 4.5 43% 30 E Apron AC ACAM Der Lodge T-1B 4 4 4 4 50% 30 E Purnway AC ACRMU Der Lodge T-1B 4 10 2.5 10 2.5 2.4% 12.5 D Taxivary AC ACRMU Der Lodge T-2 4 10 1.5 1.5 14 3 18% 16 D Taxivary	Cut Bank	T-4	6			9	9.5	1	9	10	53%	12.5	Е	Taxiway	AC	ACRMU
Carl Bank T-6 6 1 12 3 12 3 20% 20 D Taxiway AC ACRMU Deer Lodge A-3 4 6 2.5 1.5 6 4 40% 30 E Apon AAC ACAM Deer Lodge A-5 4 4 4 50% 30 E Apon AAC ACAM Deer Lodge R-4 4 4 4 50% 30 E Apon AAC ACAM Deer Lodge R-4 4 4 4 4 50% 30 E Rurway AC ACRML Deer Lodge T-18 4 4 50% 30 E Rurway AC ACRML Deer Lodge T-18 4 4 5 30 0 Taxiway AC ACAML Dillon A-3 11 1 1 15 3 177% <td< td=""><td>Cut Bank</td><td>T-5</td><td>6</td><td>f</td><td></td><td>11</td><td>3</td><td></td><td>11</td><td>3</td><td>21%</td><td>12.5</td><td>D</td><td>Taxiway</td><td>AC</td><td>ACRMU</td></td<>	Cut Bank	T-5	6	f		11	3		11	3	21%	12.5	D	Taxiway	AC	ACRMU
Deer Lodge A-3 4 6 2.5 1.5 6 4 40% 30 E Apron AAC ACAM Deer Lodge A-4 4 4 2.5 1.5 4 4 40% 30 E Apron AAC ACAM Deer Lodge R-3 4 6 2.5 2 6 4.5 43% 30 E Apron AAC ACAM Deer Lodge R-3 4 6 2.5 2 6 4.5 43% 30 E Runway AC ACRML Deer Lodge T-18 4 8 2.5 10 2.5 D Taxiway AC ACRML Dilton A-3 11 10 4 1.5 3 17% 30 D Runway AC ACAM Dilton A-3 11 15 3 17% 30 D Runway AC ACAM	Cut Bank	T-6	6	f		12	3		12	3	20%	20	D	Taxiway	AC	ACRMU
Deer Lodge A.4 4 4 2.5 1.5 4 4 50% 30 E Apron ACC ACAM Deer Lodge A-5 4 4 4 4 50% 30 E Apron AC ACAM Deer Lodge R-3 4 6 2.5 2 6 4.5 4% 30 E Apron AC ACAM Deer Lodge R-4 4 4 4 50% 30 E Runway AC ACRML Deer Lodge T-18 4 4 4 50% 30 E Runway AC ACRML Deer Lodge T-2 4 10 4 15 15 14 3 18% 16 D Apron AC ACRML Dillon A-4 11 f 13 6 4 15 3 17% 30 D Runway AC ACRML	Deer Lodge	A-3	4	•		6	2.5	1.5	6	4	40%	30	F	Apron	AAC	ACAM
Deer Lodge A.5 4 4 4 4 4 50% 30 E Apron AC ACAM Deer Lodge R.3 4 6 2.5 2 6 4.5 4.3% 30 E Apron AC ACAM Deer Lodge R-18 4 4 4 4 4 50% 30 E Aurway AC ACRML Deer Lodge T-18 4 8 2.5 8 2.5 20% 12.5 D Taxiway AC ACRML Dillon A.3 11 10 4 1.5 1.5 14 3 18% 16 D Apron AC ACAH Dillon A.4 11 5 3 11.5 3 17% 30 D Ruway AC ACH Dillon R-2 11 10 4 1.5 1.5 1.4 3 17% 30	Deer Lodge	A-4	4			4	2.5	1.5	4	4	50%	30	F	Apron	AAC	ACAM
Der Lödge R.3 4 6 2.5 2 6 4.5 4.35 4.35 C Parma ACC ACRML Der Lödge R-4 4 4 4 4 4 50% 30 E Rumway AC ACRML Der Lödge T-1B 4 8 2.5 10 2.5 24% 12.5 D Taxiway AC ACRML Dilon A.3 11 10 4 1.5 1.5 1.5 1.5 D Taxiway AC ACAML Dilon A.11 1 1.5 3 11.5 3 12.5 D Taxiway AC ACAML Dilon A.4 11 1 1.5 3 11.5 3 17% 30 D Rumway AC ACAML Dilon R-2 11 1.5 3 17% 30 D Rumway AC ACRMU	Deer Lodge	Δ-5	4			4	4	1.0	4	4	50%	30	F	Anron	AC	ACAM
Deer Lodge R-3 R-4 R-1	Deer Lodge	R-3	4			- -	- 2 5	2	6	45	13%	30		Runway		
Deer Lodge T-14 4 4 4 4 4 50% 30% L Intimely AC ACIMUL Deer Lodge T-2 4 10 2.5 10 2.5 20% 12.5 D Taxiway AC ACRML Dillon A-4 11 f 13 6 4 19 4 17% 33 G Apron AC ACAH Dillon A-41 1 f 15 3 115 3 17% 30 D Rurway AC ACAH Dillon R-4 11 f 24 15 3 178 30 D Rurway AC ACRMU Dillon R-2 11 10 4 1.5 14 3 18% 16 D Rurway AC ACRMU Dillon T-2 11 10 4 1.5 11 3 21% 12.5	Deer Lodge	R-4	4			4	2.5	2	1	4.5	-0%	30		Runway	AC	
Deer Lodge T-12 4 6 2.3 6 2.3 24% 12.3 D Takinay AC AOMNL Dillon A.3 11 10 4 1.5 10 2.5 20% 12.5 D Takinay AC ACRML Dillon A.4 11 f 13 6 4 19 4 17% 33 G Apron AC ACAML Dillon A.11 11 11.5 3 11.5 3 21% 22 D Apron AC ACAM Dillon R-3 11 f 24 3 17% 30 D Runway AC ACAMU Dillon R-21 11 10 4 15 15 14 3 18% 16 D Taxiway AC ACRMU Dillon T-4 11 f 7 4 3 15 3 17%	Deer Lodge	T 1D	4			4 0	4		-+ 0	4 2 5	0/0C	10.5		Toviwov		
Diele Lodge 1-2 4 10 2.3 10 2.3 20% 12.3 D Taxiway AC ACMML Dillon A-4 11 f 13 6 4 15 14 3 18% 16 D Apron AC ACAML Dillon A-4 11 f 13 6 4 19 4 17% 33 G Apron AC ACAML Dillon A-4 11 f 24 15 3 15 3 17% 30 D Runway AC ACRMU Dillon R-4 11 f 24 15 3 17 3 18% 16 D Taxiway AC ACRMU Dillon T-3 11 7 4 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 <td< td=""><td>Deer Lodge</td><td></td><td>4</td><td></td><td></td><td>10</td><td>2.5</td><td></td><td>10</td><td>2.0</td><td>24 %</td><td>10.5</td><td></td><td>Taxiway</td><td>AC</td><td></td></td<>	Deer Lodge		4			10	2.5		10	2.0	24 %	10.5		Taxiway	AC	
Dilloin A-3 11 10 4 1.3 1.3 14 3 15% 16 D Apron ACC ACAM Dillon A-11 11 11.5 3 11.5 3 11% 33 G Apron AC ACAM Dillon R-3 11 15 3 115 3 17% 30 D Runway AC ACAMU Dillon R-21 11 17 3 15 3 17% 30 D Runway AC ACRMU Dillon T-2 11 10 4 1.5 1.5 14 3 18% 16 D Taxiway AC ACRMU Dillon T-4 11 f 7 4 3 11 3 12% 12.5 D Taxiway AC ACRMU Dillon T-4 11 f 7 4 3.5 13.5	Dillon	1-2	4		10	10	2.0	1 5	14	2.0	100/	12.0		Aprop	AC	ACAM
Dilloin A-4 II I IS 0 4 IS 4 IS 4 IS 4 IS 3 C Aptuil Acc Accan Dillon R-3 11 11.5 3 115 3 117% 30 D Runway AC ACAM Dillon R-3 11 1 15 3 17% 30 D Runway AC ACRMU Dillon R-21 11 10 4 1.5 1.5 14 3 18% 16 D Taxiway AC ACRMU Dillon T-2 11 10 4 1.5 1.5 14 3 18% 16 D Taxiway AC ACRMU Dillon T-5 11 15 3 117% 30 D Taxiway AC ACRMU Ekalaka A-1 2 11.5 2 1 3.5	Dillon	A-3	11	£	10	4	1.5	1.5	14	3	10%	10	C	Apron	AAC	
Dillon R-11 IT IT <thit< th=""> IT IT <t< td=""><td>Dillon</td><td>A-4</td><td>11</td><td>I</td><td>13</td><td>0</td><td>4</td><td></td><td>19</td><td>4</td><td>1/%</td><td>33</td><td>G</td><td>Apron</td><td>AC</td><td>ACAH</td></t<></thit<>	Dillon	A-4	11	I	13	0	4		19	4	1/%	33	G	Apron	AC	ACAH
Duilon R-3 11 15 3 15 3 17% 30 D Hullway AC ACMMU Dillon R-21 11 17 3 17 3 17% 30 D Runway AC ACRMU Dillon R-21 11 10 4 1.5 1.4 3 18% 16 D Runway AC ACRMU Dillon T-2 11 10 4 1.5 1.5 14 3 18% 16 D Taxiway AC ACRMU Dillon T-4 11 f 7 4 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 3 17 30 D Taxiway AC ACRMU Dillon T-5 11 3.5 13.5 4 23% 12.5 D Runway AC	Dillon	A-II	11			11.5	3		11.5	3	21%	22	D	Apron	AC	
Dillon R-4 11 T 24 15 3 39 39 3 7% 30 D Humay AC ACRMU Dillon T-2 11 10 4 1.5 1.5 14 3 18% 16 D Taxiway AC ACRMU Dillon T-3 11 7 4 3 11 3 12% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 3 15 3 12.5 D Taxiway AC ACRMU Ekalaka R-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Rumay AC ACRML Ekalaka T-1 2 g,f 10 4 25%	Dillon	R-3	11	,	0.4	15	3		15	3	17%	30	D	Runway	AC	ACRIMU
Dillon H-21 I	Dillon	R-4	11	T	24	15	3		39	3	1%	30	D	Runway	AC	ACRMU
Dillon 1-2 11 10 4 1,5 1,5 14 3 1% 16 D Iaxiway AAC ACRMU Dillon T-3 11 7 4 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-4 11 f 7 4 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACRMU Ekalaka R-1 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 10 4 12.5 D Taxiway AC ACRML Ekalaka T-11 2 g,f 10 4 23% 12.5 D Apron<	Dillon	R-21	11		10	17	3		17	3	15%	30	D	Runway	AC	ACRMU
Dillon I-3 I1 I I1 3 21% 12.5 D Iaxiway AC ACHMU Dillon T-4 11 f 7 4 3 11 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 11 15 3 15 3 17% 30 D Taxiway AC ACRMU Ekalaka A-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACRML Ekalaka R-11 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 10 4 23% 12.5 D Taxiway AC ACRML Ekalaka T-11 2 g,f 10 4 29% 12.5 <t< td=""><td>Dillon</td><td>1-2</td><td>11</td><td></td><td>10</td><td>4</td><td>1.5</td><td>1.5</td><td>14</td><td>3</td><td>18%</td><td>16</td><td>D</td><td>Taxiway</td><td>AAC</td><td>ACRMU</td></t<>	Dillon	1-2	11		10	4	1.5	1.5	14	3	18%	16	D	Taxiway	AAC	ACRMU
Dillon I-4 I1 I I1 3 21% 12.5 D Taxiway AC ACRMU Dillon T-5 I1 15 3 15 3 17% 30 D Taxiway AC ACRMU Ekalaka A-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACRMU Ekalaka R-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Runway AC ACRMU Ekalaka R-11 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-11 2 g,f 10 4 23% 12.5 D Taxiway AC ACRML Ekalaka T-11 2 g,f 10 4 23% 12.5 D Taxiway AC ACRML Ennis A-1 11 8 3 8 3 27% <	Dillon	1-3	11		/	4	3		11	3	21%	12.5	D	Taxiway	AC	ACRMU
Dillon T-5 11 15 3 15 3 17% 30 D Taxiway AC ACRMU Ekalaka A-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACAM Ekalaka R-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACRML Ekalaka R-11 2 g,f 12 4 12 4 25% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 10 4 23% 12.5 D Taxiway AC ACRML Ennis A-1 11 8 3 27% 12.5 D Apron AC ACAM Ennis A-1 11 7 3 30% 12.5 D Ruway AC ACRMU	Dillon	1-4	11	t	7	4	3		11	3	21%	12.5	D	Taxiway	AC	ACRMU
Ekalaka A-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Apron AC ACAM Ekalaka R-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Runway AC ACRML Ekalaka R-11 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 12 4 23% 12.5 D Runway AC ACRML Ekalaka T-1 2 g,f 10 4 29% 12.5 D Runway AC ACRML Ekalaka T-11 2 g,f 10 4 29% 12.5 D Apron AC ACRML Ennis A-1 11 7 3 30% 12.5 D Apron AC ACRMU Ennis T-1 11 7 3 30% 12.5 D Runway AC	Dillon	T-5	11			15	3		15	3	17%	30	D	Taxiway	AC	ACRMU
Ekalaka R-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Runway AC ACRML Ekalaka R-11 2 g,f 12 4 12 4 25% 12.5 D Runway AC ACRML Ekalaka T-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Runway AC ACRML Ekalaka T-11 2 g,f 10 4 23% 12.5 D Taxiway AC ACRML Ennis A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis A-1 11 7 3 8 3 27% 12.5 D Apron AC ACAM Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka T-2 11 8 3	Ekalaka	A-1	2		11.5	2	1	3.5	13.5	4	23%	12.5	D	Apron	AC	ACAM
Ekalaka R-11 2 g,f 12 4 12 4 25% 12.5 D Runway AC ACRML Ekalaka T-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Taxiway AC ACRML Ekalaka T-11 2 g,f 10 4 29% 12.5 D Taxiway AC ACRML Enais A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAMM Ennis A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis A-2 11 11 8 3 7 3 30% 12.5 D Runway AC ACRMU Ennis T-1 11 1 8 3 27% 12.5 D Taxiway AC ACRMU Eureka T-2 11 8 3 4 3 <td< td=""><td>Ekalaka</td><td>R-1</td><td>2</td><td></td><td>11.5</td><td>2</td><td>1</td><td>3.5</td><td>13.5</td><td>4</td><td>23%</td><td>12.5</td><td>D</td><td>Runway</td><td>AC</td><td>ACRML</td></td<>	Ekalaka	R-1	2		11.5	2	1	3.5	13.5	4	23%	12.5	D	Runway	AC	ACRML
Ekalaka T-1 2 11.5 2 1 3.5 13.5 4 23% 12.5 D Taxiway AC ACRML Ekalaka T-11 2 g,f 10 4 29% 12.5 D Taxiway AC ACRML Ennis A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis A-2 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis R-11 11 7 3 30% 12.5 D Runway AC ACRMU Ennis T-1 11 8 3 27% 12.5 D Taxiway AC ACRMU Ennis T-2 11 8 3 27% 12.5 D Taxiway AC ACRMU Eureka A-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM	Ekalaka	R-11	2	g,f		12	4		12	4	25%	12.5	D	Runway	AC	ACRML
Ekalaka T-11 2 g,f 10 4 10 4 29% 12.5 D Taxiway AC ACRML Ennis A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis A-2 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis R-11 11 7 3 7 3 30% 12.5 D Apron AC ACAM Ennis R-11 11 7 3 7 3 30% 12.5 D Runway AC ACRMU Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka T-2 11 8 3 4 3 43% 12.5	Ekalaka	T-1	2		11.5	2	1	3.5	13.5	4	23%	12.5	D	Taxiway	AC	ACRML
Ennis A-1 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis A-2 11 8 3 8 3 27% 12.5 D Apron AC ACAM Ennis R-11 11 7 3 30% 12.5 D Runway AC ACAM Ennis T-1 11 7 3 07 3 30% 12.5 D Runway AC ACRMU Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Ennis T-2 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka A-1 2 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T	Ekalaka	T-11	2	g,f		10	4		10	4	29%	12.5	D	Taxiway	AC	ACRML
EnnisA-211838327%12.5DApronACACAMEnnisR-1111737330%12.5DRunwayACACRMUEnnisT-111838327%12.5DTaxiwayACACRMUEnnisT-211838327%12.5DTaxiwayACACRMUEurekaA-12434343%12.5EApronACACAMEurekaR-12434343%12.5ERunwayACACRMLEurekaT-12434343%12.5ETaxiwayACACRMLEurekaT-12434343%12.5ETaxiwayACACRMLEurekaT-22434343%12.5ETaxiwayACACRMLEurekaT-22434333%12.5ETaxiwayACACRMLEurekaT-32636333%12.5ETaxiwayACACRMLEurekaT-42636333%12.5ETaxiwayACACRMLEurekaT-52636333%12.5	Ennis	A-1	11			8	3		8	3	27%	12.5	D	Apron	AC	ACAM
Ennis R-11 11 7 3 7 3 30% 12.5 D Runway AC ACRMU Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Ennis T-2 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka A-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 4 3 43% 12.5 E Runway AC ACRML Eureka T-1 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 43% 12.5 E Taxiway AC	Ennis	A-2	11			8	3		8	3	27%	12.5	D	Apron	AC	ACAM
Ennis T-1 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Ennis T-2 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka A-1 2 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 43% 12.5 E Apron AC ACAM Eureka T-1 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 <t< td=""><td>Ennis</td><td>R-11</td><td>11</td><td></td><td></td><td>7</td><td>3</td><td></td><td>7</td><td>3</td><td>30%</td><td>12.5</td><td>D</td><td>Runway</td><td>AC</td><td>ACRMU</td></t<>	Ennis	R-11	11			7	3		7	3	30%	12.5	D	Runway	AC	ACRMU
Ennis T-2 11 8 3 8 3 27% 12.5 D Taxiway AC ACRMU Eureka A-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 4 3 43% 12.5 E Runway AC ACRML Eureka T-1 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka<	Ennis	T-1	11			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRMU
Eureka A-1 2 4 3 43% 12.5 E Apron AC ACAM Eureka R-1 2 4 3 4 3 43% 12.5 E Apron AC ACAM Eureka T-1 2 4 3 4 3 43% 12.5 E Runway AC ACRML Eureka T-1 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC	Ennis	T-2	11			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRMU
EurekaR-12434343%12.5ERunwayACACRMLEurekaT-12434343%12.5ETaxiwayACACRMLEurekaT-22434343%12.5ETaxiwayACACRMLEurekaT-32636333%12.5ETaxiwayACACRMLEurekaT-42636333%12.5ETaxiwayACACRMLEurekaT-52636333%12.5ETaxiwayACACRML	Eureka	A-1	2			4	3		4	3	43%	12.5	Е	Apron	AC	ACAM
Eureka T-1 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-2 2 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-5 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML	Eureka	R-1	2			4	3		4	3	43%	12.5	Е	Runway	AC	ACRML
Eureka T-2 2 4 3 4 3 43% 12.5 E Taxiway AC ACRML Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-5 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML	Eureka	T-1	2			4	3		4	3	43%	12.5	Е	Taxiway	AC	ACRML
Eureka T-3 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-4 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML Eureka T-5 2 6 3 6 3 33% 12.5 E Taxiway AC ACRML	Eureka	T-2	2			4	3		4	3	43%	12.5	Е	Taxiwav	AC	ACRML
EurekaT-42636333%12.5ETaxiwayACACRMLEurekaT-52636333%12.5ETaxiwayACACRML	Eureka	T-3	2			6	3		6	3	33%	12.5	Е	Taxiwav	AC	ACRML
Eureka T-5 2 6 3 6 3 6 3 33% 12.5 E Taxiway AC ACRML	Eureka	T-4	2			6	3		6	3	33%	12.5	E	Taxiwav	AC	ACRML
	Eureka	T-5	2			6	3		6	3	33%	12.5	Е	Taxiwav	AC	ACRML

Ensynth A-1 9 4 3 2.5 4 5.5 88% 18 E Anco ACAM Forsynth T-1 9 7 3 7 3 30% 12.5 E Taxiway AC ACPMU Forsynth T-2 9 7 3 30% 12.5 E Taxiway AC ACPMU Forsynth T-3 9 7 3 30% 12.5 E Taxiway AC ACPMU Fort Benton A-1 5 I 6 3 33% 12.5 E Auron ACCM ACPMU Fort Benton T-1 5 I 6 3 33% 12.5 E Taxiway AC ACPMU Fort Benton T-2 5 I 6 3 33% 12.5 E Taxiway AC ACPML Fort Benton T-3 9 I 12.1 I <th>BRANCH NAME (Airport City)</th> <th>Sectior</th> <th>Approx. Annual Operations</th> <th>Geo- Grid / Fabric</th> <th>Sub- base (Inches) (Agg)</th> <th>Base Course (Inches) (Agg) (AC)</th> <th>(BST)</th> <th>Surface Course (Inches) (AC) (PC</th> <th><u>C) (B</u></th> <th>Over (Inch ST) (AC</th> <th>rlay nes) C) (PFC)</th> <th>Gravel Depth</th> <th>Asphalt Depth</th> <th>% Asphalt Depth</th> <th>Pvmnt Strngth (1,000 Ibs.)</th> <th>Section Cate- gory</th> <th>Branch Use</th> <th>Surface Type</th> <th>FAMILY</th>	BRANCH NAME (Airport City)	Sectior	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	(BST)	Surface Course (Inches) (AC) (PC	<u>C) (B</u>	Over (Inch ST) (AC	r lay nes) C) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Forsych F.1 9 7 3 30% 12.5 E Purway AC ACRMU Forsych T.2 9 7 3 30% 12.5 F Taxiway AC ACRMU Forsych T.3 9 7 3 30% 12.5 F Taxiway AC ACRMU Forsych T.4 9 7 3 30% 12.5 E Taxiway AC ACRMU Fort Benion R.1 5 1 6 3 33% 12.5 E Aurway AC ACAMU Fort Benion T.1 5 1 6 3 33% 12.5 E Taxiway AC ACAMU Fort Benion T.4 5 1 6 3 33% 33% 12.5 E Taxiway AC ACAMU Gardiner T.1 9 C PC PC PC PC PC <td>Forsyth</td> <td>A-1</td> <td>9</td> <td></td> <td></td> <td>4</td> <td></td> <td>3</td> <td></td> <td>2.5</td> <td>5</td> <td>4</td> <td>5.5</td> <td>58%</td> <td>18</td> <td>E</td> <td>Apron</td> <td>AAC</td> <td>ACAM</td>	Forsyth	A-1	9			4		3		2.5	5	4	5.5	58%	18	E	Apron	AAC	ACAM
Forsych T-1 9 7 3 30% 12.5 E Taxway AC ACRMU Forsych T-2 9 3 6 2.5 8.5 7 4 12.5 E Taxway AC ACRMU Forsych T-4 9 7 3 30% 12.5 E Taxway AC ACRMU Forl Benton R-1 5 f 6 3 33% 12.5 E Taxway AC ACRMU Forl Benton T-1 5 f 6 3 33% 12.5 E Taxway AC ACRMU Forl Benton T-4 5 f 6 3 33% 12.5 D Taxway AC ACRMU Gardiner R-1 9 C PCC	Forsyth	R-1	9			7		3				7	3	30%	12.5	Е	Runway	AC	ACRMU
Forsynth T.2 9 J 3 6 2.5 3 8.5 74% 12.5 F Taxiway AC ACRMU Forsynth T.4 9 7 3 30% 12.5 E Taxiway AC ACRMU Fort Benton R-1 5 f 6 3 30% 12.5 E Taxiway AC ACRMU Fort Benton R-1 5 f 6 3 33% 12.5 E Taxiway AC ACRMU Fort Benton T.4 5 f 6 3 33% 12.5 E Taxiway AC ACRMU Fort Benton T.4 5 f 6 3 33% 12.5 E Taxiway AC ACRMU Gardiner T.1 9 4 0 4 100% 4 C Taxiway AC ACRMU Gardiner 7.1 9 5	Forsyth	T-1	9			7		3				7	3	30%	12.5	Е	Taxiway	AC	ACRMU
Forsynth T-4 9 7 3 7 3 80% 12.5 E Taxiway AC ACRMU Fott Benton A-1 5 I 6 3 37% 12.5 E Taxiway AC ACRMU Fott Benton T-1 5 I 6 3 37% 12.5 E Taxiway AC ACRMU Fott Benton T-1 5 I 6 3 37% 12.5 E Taxiway AC ACRMU Fott Benton T-3 5 8 3 6 3 37% 12.5 E Taxiway AC ACRMU Gardiner R-1 9 4 0 4 100% 4 C Taxiway AC ACRMU Gardiner R-1 9 9 3 25% 23 D Apron AC ACAMU Gardiner R-1 9	Forsyth	T-2	9			3		6		2.5	5	3	8.5	74%	12.5	F	Taxiway	AAC	ACRMU
Fore phr T-4 9 7 3 90% 12.5 E Taxway AC ACAMP Fort Benton R-1 5 f 6 3 33% 12.5 E Parton AC ACAMP Fort Benton R-1 5 f 6 3 33% 12.5 E Taxway AC ACAMP Fort Benton T-2 5 f 6 3 33% 12.5 E Taxway AC ACRML Fort Benton T-3 5 8 3 33% 12.5 E Taxway AC ACRML Gardiner T-1 9 2 0 4 100% 4 C Paron AC ACRML Gardiner T-1 9 12 14 9 25% 23 0 Apron AC ACAM Gardiner T-1 9 3 25% 23 0	Forsyth	T-3	9			7		3				7	3	30%	12.5	Е	Taxiway	AC	ACRMU
Fort Benton A-1 5 I 6 3 3 12.5 E Apron AC ACAME Fort Benton T-1 5 I 6 3 33% 12.5 E Apron AC ACAME Fort Benton T-2 5 I 6 3 33% 12.5 E Taxiway AC ACAME Fort Benton T-3 5 I 6 3 33% 12.5 E Taxiway AC ACRML Fort Benton T-3 5 I 6 3 33% 12.5 E Taxiway AC ACRML Gardiner B-1 9 I 6 3 33% 12.5 E Purway AC ACAME Glasgow A-3 30 C B 3 93% 2.5 D Apron PCC	Forsyth	T-4	9			7		3				7	3	30%	12.5	E	Taxiway	AC	ACRMU
Fot Benton Fr.1 5 f 6 3 3 3% 12.5 E Futmaway AC ACRML Fot Benton T-2 5 1 6 3 33% 12.5 E Taxiway AC ACRML Fot Benton T-3 5 8 3 33% 12.5 E Taxiway AC ACRML Fot Benton T-4 5 1 6 3 33% 12.5 E Taxiway AC ACRML Gardner T-1 9 - 4 0 4 100% 4 C Taxiway AC ACRML Glasgow A-3 30 1 25 5 3 9 3 3 3% 12.5 D Apron AC ACAML Glasgow A-13 30 4 25 D Apron AC ACAML Glasgow T-1 30 11	Fort Benton	A-1	5	f		6		3				6	3	33%	12.5	E	Apron	AC	ACAM
Fort Benton T-1 5 f 6 3 33% 12.5 E Taxway AC ACPML Fort Benton T-3 5 8 3 6 3 33% 12.5 E Taxway AC ACPML Fort Benton T-4 5 f 6 3 33% 12.5 E Taxway AC ACPML Gardiner H-1 9 4 0 4 100% 4 C Runway AC ACPL Gardiner H-1 9 7 3 0 6 3 3% 0 4 C Paron AC ACPL Glasgow A-4 30 6 5 4 9 3 25% 12.5 D Apron AC ACAM Glasgow R-14 30 9,1 1 8 4 2 2.5 1 Runway AC A	Fort Benton	R-1	5	f		6		3				6	3	33%	12.5	E	Runway	AC	ACRML
Fort Benton T-2 5 f 6 3 33% 12.5 E Taxway AC ACRML Fort Benton T-4 5 f 6 3 33% 12.5 E Taxway AC ACRML Gardiner T-1 9 - 4 0 4 100% 4 C Rurway AC ACRML Gardiner T-1 9 - 4 0 4 100% 4 C Rurway AC ACRML Glasgow A-3 30 - 6 3 30 25% 23 D Apron PCC PCC PCC PCC PCC PCC PCC PCC PC PC <td>Fort Benton</td> <td>T-1</td> <td>5</td> <td>f</td> <td></td> <td>6</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>6</td> <td>3</td> <td>33%</td> <td>12.5</td> <td>E</td> <td>Taxiway</td> <td>AC</td> <td>ACRML</td>	Fort Benton	T-1	5	f		6		3				6	3	33%	12.5	E	Taxiway	AC	ACRML
Fort Benton T-3 5 6 3 3 27% 12.5 D Taxiway AC ACRML Gardiner R-1 9 4 0 4 100% 4 C Taxiway AC ACPML Gardiner R-1 9 7 4 0 4 100% 4 C Taxiway AC ACPL Glasgow A-3 30 6 3 3 9 3 25% 23 D Apron AC ACPL Glasgow A-4 30 f 12 14 9 PCC PC PC PC	Fort Benton	T-2	5	f		6		3				6	3	33%	12.5	E	Taxiway	AC	ACRML
Fort Benton T-4 5 f 6 3 6 3 33% 12.5 E Taxiway AC ACPL Gardiner T-1 9 - 4 0 4 100% 4 C Taxiway AC ACPL Gardiner T-1 9 6 3 9 3 25% 23 0 Apron ACC ACPL Glasgow A-4 30 1 2 5 3 9 3 25% 23 0 Apron PCC	Fort Benton	T-3	5			8		3				8	3	27%	12.5	D	Taxiway	AC	ACRML
Gardiner F-1 9 4 0 4 100% 4 C Faxiway AC ACPL Glasgow A-3 30 6 3 3 9 3 2% 23 D Aron AC ACAM Glasgow A-6 30 f 12 14 9 PCC PCC PCC PC PC </td <td>Fort Benton</td> <td>T-4</td> <td>5</td> <td>f</td> <td></td> <td>6</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>6</td> <td>3</td> <td>33%</td> <td>12.5</td> <td>E</td> <td>Taxiway</td> <td>AC</td> <td>ACRML</td>	Fort Benton	T-4	5	f		6		3				6	3	33%	12.5	E	Taxiway	AC	ACRML
Gardiner F-1 9 - 4 0 4 100% 4 C Taxiway AC ACPL Glasgow A-4 30 6 3 3 9 3 25% 23 D Apron ACC ACAM Glasgow A-6 30 1 125 5 3 30 3 9% 12.5 D Apron PCC PCC <td>Gardiner</td> <td>R-1</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>0</td> <td>4</td> <td>100%</td> <td>4</td> <td>С</td> <td>Runway</td> <td>AC</td> <td>ACPL</td>	Gardiner	R-1	9					4				0	4	100%	4	С	Runway	AC	ACPL
Glasgow A-3 30 6 3 3 9 3 25% 23 D Apron AC ACM Glasgow A-6 30 f 12 14 9 7 70 PCC <	Gardiner	T-1	9					4				0	4	100%	4	С	Taxiway	AC	ACPL
Glasgow A-4 30	Glasgow	A-3	30		6	3		3				9	3	25%	23	D	Apron	AC	ACAM
Glasgow A-6 30 f 12 14 9 PCC PCC<	Glasgow	A-4	30					8				PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Glasgow A-7 30 f 25 5 3 30 3 9% 12.5 D Apron AC ACAM Glasgow R-14 30 g,i 11 4 3 15 3 17% 25 D Runway AC ACRMU Glasgow R-15 30 11 8 4 2 2.6 8 12.32 61% 75 H Taxiway AC ACRMU Glasgow T-3 30 8 5 4 2 2.6 8 12.32 61% 75 H Taxiway AAC ACRHU Glasgow T-7 30 6 6 4 5 12 9 43% 75 H Taxiway AAC ACRHU Glasgow T-7 30 6 6 2 2.5 10 3 23% 75 H Taxiway AC ACRHU Glasgow T-7 30 6 2 2.5 17 5 6 Taxiway AC <td>Glasgow</td> <td>A-6</td> <td>30</td> <td>f</td> <td>12</td> <td>14</td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td>PCC</td> <td>PCC</td> <td>PCC</td> <td>PCC</td> <td>Р</td> <td>Apron</td> <td>PCC</td> <td>PCAA</td>	Glasgow	A-6	30	f	12	14		9				PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Glasgow R-13 30 8 5 4 8 9 53% 25 E Runway AC ACRMUU Glasgow R-14 30 g.1 11 4 3 15 3 17% 25 6 Runway AC ACRMU Glasgow T-1 30 8 5 4 2 2.6 8 12.3 61% 75 H Taxiway AC ACRMU Glasgow T-4 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-4 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-7 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-7 30 6 6 4 15 5 12.5 D Taxiway AC	Glasgow	A-7	30	f	25	5		3				30	3	9%	12.5	D	Apron	AC	ACAM
Glasgow R-14 30 g,f 11 4 3 15 3 17% 25 D Rumway AC ACRMU Glasgow T-1 30 8 5 4 2 2.6 8 12.32 61% 75 H Taxiway AC ACRMU Glasgow T-3 30 8 5 4 2 2.6 8 12.32 61% 75 H Taxiway AC ACRMU Glasgow T-3 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-5 30 6 6 2 10 3 23% 12.5 0 Taxiway AC ACRMU Glasgow T-9 30 6 2 2 10 3 23% 12.5 0 Taxiway AC ACRMU Glasgow T-19 30 f 15 6 4 1 2 12 6 33%	Glasgow	R-13	30		8	5		4				8	9	53%	25	E	Runway	AC	ACRMU
Glasgow F15 30 11 8 4	Glasgow	R-14	30	g,f	11	4		3				15	3	17%	25	D	Runway	AC	ACRMU
Glasgow T-1 30 8 5 4 2 2.6 8 12.3 61% 75 H Taxiway AAC ACRH Glasgow T-4 30 - - - - - 12.3 61% 75 H Taxiway AAC ACRH Glasgow T-5 30 6 6 4 5 12 9 43% 75 H Taxiway AAC ACRHU Glasgow T-7 30 6 6 2 25% 75 G Taxiway AC ACRHU Glasgow T-8 30 6 2 2 6 2 25% 75 G Taxiway AC ACRHU Glasgow T-10 30 f 12 13 5 25 5 17% 55 G Taxiway AC ACRHU Glasgow T-11 30 f 12 6 35% 14 14 Apron AAC ACRH Glasdow	Glasgow	R-15	30		11	8		4		_		19	4	21%	55	G	Runway	AC	ACRMU
Glasgow T-3 30 8 5 4 2 2.6 8 12.3 61% 75 H Iaxiway AC ACRMU Glasgow T-4 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-7 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-7 30 6 2 25% 5 17% 55 G Taxiway AC ACRHU Glasgow T-9 30 6 12 13 5 25 5 17% 55 G Taxiway AC ACRHU Glasgow T-10 30 f 12 13 5 25 5 10% 50 Taxiway AC ACRHU Glasgow T-11 30 f 12 12 6.5 35% 44 H Apron AC ACAH <	Glasgow	T-1	30		8	5		4		2	2.6	8	12.32	61%	75	н	Taxiway	AAC	ACRH
Glasgow T-4 30 12.5 E Taxiway AC ACRMU Glasgow T-5 30 6 6 4 5 12 9 43% 75 H Taxiway AC ACRMU Glasgow T-7 30 6 2 6 2 25% 75 G Taxiway AC ACRMU Glasgow T-9 30 6 2 6 2 25% 75 G Taxiway AC ACRMU Glasgow T-10 30 f 15 6 4 21 4 16% 25 D Taxiway AC ACRMU Glasgow T-11 30 f 15 6 4 1 2 12 6.5 35% 44 H Apron AAC ACMU Glendive A-1 6 6 6 4 2 12 6.5 33% 53 H Runway AAC ACMU Glendive R-1 6 6 6 </td <td>Glasgow</td> <td>T-3</td> <td>30</td> <td></td> <td>8</td> <td>5</td> <td></td> <td>4</td> <td></td> <td>2</td> <td>2.6</td> <td>8</td> <td>12.3</td> <td>61%</td> <td>75</td> <td>Н</td> <td>Taxiway</td> <td>AAC</td> <td>ACRH</td>	Glasgow	T-3	30		8	5		4		2	2.6	8	12.3	61%	75	Н	Taxiway	AAC	ACRH
Glasgow 1-5 30 6 6 4 5 12 9 43% 75 H Taxiway AAC ACRH Glasgow 7-8 30 6 2 10 3 23% 12.5 D Taxiway AC ACRH Glasgow T-8 30 6 2 6 2 25% 75 G Taxiway AC ACRH Glasgow T-9 30 6 12 13 5 25 5 17% 55 G Taxiway AC ACRH Glasgow T-11 30 f 15 6 4 12 12 6 37% 44 H Apron AAC ACRH Glasgow T-11 30 f 15 6 4 12 12 6 35% 44 H Apron AAC ACRH Glasgow T-11 6 6 6 4 12 12 6 33% 53 H Runway AC C	Glasgow	T-4	30		_	_		_		_			_		12.5	E	Taxiway	AC	ACRMU
Glasgow I-7 30 10 3 23% 12.5 D Iaxiway AC ACHMU Glasgow T-9 30 6 2 6 2 25% 75 G Taxiway AC ACRMU Glasgow T-9 30 10 3 23% 12.5 E Taxiway AC ACRMU Glasgow T-10 30 f 12 13 5 25 5 17% 55 G Taxiway AC ACRMU Glasgow T-11 30 f 15 6 4 1 2 12 6.5 35% 44 H Apron AAC ACRMU Glendive A-2 6 6 6 4 2 12 6 33% 53 H Runway AC ACRHU Glendive R-2 6 5 5 3 2 10 5 33% 53 H Runway AC ACRH Glendive R-3 6 <t< td=""><td>Glasgow</td><td>T-5</td><td>30</td><td></td><td>6</td><td>6</td><td></td><td>4</td><td></td><td>5</td><td></td><td>12</td><td>9</td><td>43%</td><td>75</td><td>н</td><td>Taxiway</td><td>AAC</td><td>ACRH</td></t<>	Glasgow	T-5	30		6	6		4		5		12	9	43%	75	н	Taxiway	AAC	ACRH
Glasgow T-8 30 6 2 6 2 25% 7.5 G Taxway AC ACRH Glasgow T-9 30 12.5 E Taxiway AC ACRHU Glasgow T-10 30 f 12 13 5 25 5 17% 55 G Taxiway AC ACRHU Glasgow T-11 30 f 12 6 25 5 17% 55 G Taxiway AC ACRHU Glasgow T-11 30 f 15 6 4 21 4 16% 25 D Taxiway AC ACRHU Glendive A-2 6 6 6 4 2 12 6 33% 53 H Runway AAC ACRH Glendive R-2 6 5 5 33 2 10 5 33% 38 H Runway AAC ACRH Glendive T-1 6 6 4 1<	Glasgow	I-/	30			10		3				10	3	23%	12.5	D	Taxiway	AC	ACRMU
Glasgow 1-9 30 12.5 E Iaxiway AC ACHMU Glasgow T-10 30 f 12 13 5 25 5 17% 55 G Taxiway AC ACRH Glasgow T-11 30 f 15 6 4 1 2 12 6.5 35% 44 H Apron AAC ACRMU Glendive A-1 6 6 6 4 1 2 12 6.5 35% 44 H Apron AAC ACAH Glendive R-1 6 6 6 4 2 12 6 33% 53 H Runway AAC ACRH Glendive R-2 6 5 5 3 2 10 5 33% 38 H Runway AAC ACRH Glendive T-2 6 5 5 3 2 10 5 33% 38 H Runway AC ACRH <	Glasgow	1-8	30			6		2				6	2	25%	/5	G	Taxiway	AC	ACRH
Glasgow 1-10 30 f 12 13 5 25 5 17% 55 G I axiway AC ACRH Glasgow T-11 30 f 15 6 4 21 4 16% 25 D Taxiway AC ACRMU Glendive A-1 6 6 6 4 1 2 12 6.5 35% 44 H Apron AAC ACAM Glendive A-2 6 5 5 3 2 10 5 33% 53 H Runway AAC ACRH Glendive R-2 6 5 5 3 2 10 5 33% 38 H Runway AAC ACRH Glendive R-3 6 6 6 3 2 10 5 33% 38 H Runway AAC ACRH Glendive T-1 6 6 6 4 1 12 4.5 27% 44 G	Glasgow	1-9	30	,		1.5		_					_		12.5	E	Taxiway	AC	ACRMU
Glasgow 1-11 30 f 15 6 4 21 4 16% 25 D Jaxway AC ACHMU Glendive A-2 6 6 6 4 1 2 12 6.5 35% 44 H Apron AAC ACAH Glendive A-2 6 6 6 4 2 12 6.5 35% 44 H Apron AAC ACAH Glendive R-2 6 6 6 4 2 12 6 33% 53 H Runway AAC ACAH Glendive R-2 6 5 5 3 2 10 5 33% 38 H Runway AAC ACRMU Glendive T-1 6 6 6 4 1 12 4.5 27% 44 G Taxiway AC ACRMU Glendive T-2 6 f 12 5 29% 30 D Taxiway AC A	Glasgow	I-10	30	t	12	13		5				25	5	1/%	55	G	Taxiway	AC	ACRH
Clendive A-1 6 6 6 4 1 2 12 6.5 35% 44 H Appron AAC AAC Glendive R-1 6 6 6 4 2 12 6.5 35% 44 H Appron AAC ACAM Glendive R-1 6 6 6 4 2 12 6 33% 53 H Runway AAC ACAM Glendive R-2 6 5 5 3 2 10 5 33% 38 H Runway AAC ACRH Glendive T-1 6 6 6 4 1 12 4.5 27% 44 G Taxiway AAC ACRHU Glendive T-2 6 f 12 5 27% 44 G Taxiway AAC ACRMU Glendive T-2 6 f 12 5 27% 30 D Taxiway AC ACRMU Glendive <td>Glasgow</td> <td>1-11</td> <td>30</td> <td>t</td> <td>15</td> <td>6</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>21</td> <td>4</td> <td>16%</td> <td>25</td> <td>D</td> <td>Taxiway</td> <td>AC</td> <td>ACRMU</td>	Glasgow	1-11	30	t	15	6		4				21	4	16%	25	D	Taxiway	AC	ACRMU
Calendive A-2 6	Glendive	A-1	6		6	6		4		1 2	-	12	6.5	35%	44	н	Apron	AAC	ACAH
Clendive H-1 6 6 6 4 2 12 6 33% 53 H Hunway AAC ACHH Glendive R-2 6 5 5 5 3 2 10 5 33% 38 H Runway AAC ACRH Glendive R-3 6 6 3 2 6 5 45% 12.5 E Runway AAC ACRH Glendive T-1 6 6 6 4 1 12 4.5 27% 44 G Taxiway AAC ACRMU Glendive T-2 6 f 12 5 2.5 0 7.5 100% 12.5 F Taxiway AAC ACRMU Glendive T-6 6 f 12 5 2.9% 30 D Taxiway AC ACRMU Glendive T-7 6 10 4 10 4 29% 30 D Taxiway AC ACRMU Ham	Glendive	A-2	6		0	0		5		2.3	5	0	7.5	100%	12.5	F	Apron	AAC	ACAM
Glendive H-2 6 5 5 5 3 2 10 5 33% 38 H Hullway AAC ACH Glendive R-3 6 6 3 2 6 5 45% 12.5 E Runway AAC ACH ACH Glendive T-1 6 6 6 4 1 12 4.5 27% 44 G Taxiway AAC ACH ACH Glendive T-2 6 f 12 5 2.5 0 7.5 100% 12.5 F Taxiway AAC ACRMU Glendive T-5 6 f 12 5 29% 30 D Taxiway AC ACRMU Glendive T-6 6 f 12 5 29% 30 D Taxiway AC ACRMU Glendive T-7 6 10 4 10 4 29% 30 D Taxiway AC ACRMU Glendive	Glendive	R-I	6		6	6		4		2		12	6	33%	53	н	Runway	AAC	ACRH
GlendiveH-3666326545%12.5EHulwayAACACRINUGlendiveT-16641124.527%44GTaxiwayAACACRHGlendiveT-26f12507.5100%12.5FTaxiwayAACACRMUGlendiveT-66f12512529%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUHamiltonA-12547111.5110.54%17DApronSTSTPAHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonR-225f911.591.2512%17DRunwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-3259 <td< td=""><td>Glendive</td><td>R-2</td><td>6</td><td></td><td>5</td><td>5</td><td></td><td>3</td><td></td><td>2</td><td></td><td>10</td><td>5</td><td>33%</td><td>38</td><td></td><td>Runway</td><td>AAC</td><td>ACRH</td></td<>	Glendive	R-2	6		5	5		3		2		10	5	33%	38		Runway	AAC	ACRH
GlendiveT-16664T124.5 27% 44GTaxiwayACACRMUGlendiveT-26552.507.5100%12.5FTaxiwayACACRMUGlendiveT-66f12512529%30DTaxiwayACACRMUGlendiveT-66f12512529%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUHamiltonA-125471110.54%17DApronSTSTPAHamiltonA-2259111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-32591 <td< td=""><td>Glendive</td><td>R-3 ⊤ 1</td><td>6</td><td></td><td>c</td><td>6</td><td></td><td>3</td><td></td><td>- 2</td><td></td><td>10</td><td>5 4 E</td><td>45%</td><td>12.5</td><td>E</td><td>Runway</td><td>AAC</td><td></td></td<>	Glendive	R-3 ⊤ 1	6		c	6		3		- 2		10	5 4 E	45%	12.5	E	Runway	AAC	
GlendiveT-26f1252.307.5100%12.5FTaxiwayAACACRMUGlendiveT-56f12512529%30DTaxiwayACACRMUGlendiveT-66f12512529%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUHamiltonA-125471110.54%17DApronSTSTPAHamiltonA-2259111.5111.7514%17DRunwayACACRMUHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-325919	Glendive	1-1 T 0	6		0	0		4		י - גע	-	12	4.5	27%	44	G E	Taxiway	AC	
GlendiveT-56112512529%30DTaxiwayACACRMUGlendiveT-66f12512529%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUHamiltonA-125471110.54%17DApronSTSTPAHamiltonA-2259111.5111.7514%17DRunwayACACRMUHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-325128420417%DTaxiwayACACRMUHamiltonT-325128420417%DTaxiwayACACRMU	Glendive	1-2 T 5	6	£		10		5		2.3	5	10	7.5	100%	12.5		Taxiway	AAC	
GlendiveT-66112512529%30DTaxiwayACACRMUGlendiveT-7610410429%30DTaxiwayACACRMUHamiltonA-125471110.54%17DApronSTSTPAHamiltonA-2259190.55%17AApronSTSTPAHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwayACACRMUHamiltonT-325128420417%DTaxiwayACACRMU	Glendive	1-5 T.C	6	I F		12		5				12	5	29%	30		Taxiway	AC	
Calendide1-7610410429%30DTaxiwayACACRINGHamiltonA-125471110.54%17DApronSTSTPAHamiltonA-2259190.55%17AApronSTSTPAHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225f40421.591.2512%17DTaxiwayACACRMUHamiltonT-325911.590.55%17DTaxiwayACACRMUHamiltonT-325128420417%17DTaxiwayACACRMU	Glendive	1-0 T-7	6	1		12		5				12	5	29%	30		Taxiway	AC	
HamiltonA-1254711 11 0.5 4% 17DApronSTSTPAHamiltonA-225919 0.5 5%17AApronSTSTPAHamiltonR-1A2547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwaySTSTPAHamiltonT-525128420417%17DTaxiwayACACRMU	Giendive	Λ 1	25		4	7	4	4				10	4	29%	17		Aprop	AU OT	
HamiltonR-22547111.5111.7514%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonR-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwaySTSTPAHamiltonT-525128420417%17DTaxiwayACACRMU	Hamilton	A-1	25		4	7	1					0	0.5	4% 5%	17		Apron	SI ST	STPA
HamiltonR-225f404211.5111.7514%17DHullwayACACRMUHamiltonT-225f40421442.55%17DRunwayACACRMUHamiltonT-225911.591.2512%17DTaxiwayACACRMUHamiltonT-3259190.55%17DTaxiwaySTSTPAHamiltonT-525128420417%17DTaxiwayACACRMU	Hamilton	A-2 R_1A	20 25		Л	9 7	1			1	15	9 11	0.5	070 1/10/	17		Rupway	31 AC	ACRMU
Hamilton T-2 25 1 40 4 2 1 44 2.5 5% 17 D Hullway AC ACRMU Hamilton T-2 25 9 1 1.5 9 1.25 12% 17 D Taxiway AC ACRMU Hamilton T-3 25 9 1 9 0.5 5% 17 D Taxiway AC ACRMU Hamilton T-3 25 9 1 9 0.5 5% 17 D Taxiway AC ACRMU Hamilton T-5 25 12 8 4 20 4 17% 17 D Taxiway AC ACRMU	Hamilton	R_2	25	f	4 10	1	I	2		1	1.0	11	25	1 + 70 50/	17	Л	Runway		
Hamilton T-2 25 9 1 1.5 9 1.25 12% 17 D Taxiway AC ACHIVIC Hamilton T-3 25 9 1 9 0.5 5% 17 D Taxiway ST STPA Hamilton T-5 25 12 8 4 20 4 17% 17 D Taxiway AC ACRMU	Hamilton	T_2	25	I	40	4	1	2			15	44 Q	1.0	12%	17	Л	Taviway		ACRMU
Hamilton T-5 25 12 8 4 20 4 17% 17 D Taxiway AC ACRMI	Hamilton	T-3	25			9	1				1.5	a	0.5	5%	17	Л	Taxiway	ST	STPA
	Hamilton	T-5	25		12	8		4				20	4	17%	17	ם	Taxiway	AC	ACRMU

BRANCH NAME (Airport City)	Sectior	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Base Course (Inches (Agg) (Ad	e) C) (BS	Surface Course (Inches T) (AC) (F	s) PCC)	Overla (Inches (BST) (AC)	y 3) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Harlem	A-11	4		10.5	6		3				16.5	3	15%	12.5	D	Apron	AC	ACAM
Harlem	R-11	4		10.5	6		3				16.5	3	15%	12.5	D	Runway	AC	ACRML
Harlem	R-12	4		10.5	6		3				16.5	3	15%	12.5	D	Runway	AC	ACRML
Harlem	T-11	4		10.5	6		3				16.5	3	15%	12.5	D	Taxiway	AC	ACRML
Harlowton	A-11	2		4	7		2				11	2	15%	12.5	D	Apron	AC	ACAM
Harlowton	R-11	2			10		2				10	2	17%	12.5	D	Runway	AC	ACRML
Harlowton	T-11	2		4	7		2				11	2	15%	12.5	D	Taxiway	AC	ACRML
Havre	A-3	8			5		6		4	1	5	10.5	68%	30	Е	Apron	AAC	ACAM
Havre	A-4	8			8		3				8	3	27%	25	D	Apron	AC	ACAM
Havre	A-5	8		16	3		4			1	19	4.5	19%	45	G	Apron	AC	ACAH
Havre	R-5	8			14		3			1	14	3.5	20%	30	D	Runway	AC	ACRMU
Havre	R-11	8			8		2		2	1	8	4.5	36%	12.5	Е	Runway	AAC	ACRMU
Havre	R-12	8		30	8		3			1	36	3.5	9%	12.5	D	Runway	AC	ACRMU
Havre	T-2	8		8	6		3			1	14	3.5	20%	30	D	Taxiway	AC	ACRMU
Havre	T-3	8		6	6		2			1	12	2.5	17%	12.5	D	Taxiway	AC	ACRMU
Havre	T-4	8		11.5	6		3			1	17.5	3.5	17%	30	D	Taxiway	AC	ACRMU
Havre	T-5	8		8	6		3			1	14	3.5	20%	30	D	Taxiway	AC	ACRMU
Havre	T-6	8			9		3				9	3	25%	12.5	D	Taxiway	AC	ACRMU
Jordan	A-11	2	g, f	11	4		3				15	3	17%	12.5	D	Apron	AC	ACAM
Jordan	R-1	2	0	7	5	1.5	5		3.5		12	4.25	26%	12.5	D	Runway	AC	ACRML
Jordan	T-1	2		7	5	1.5	5		3.5		12	4.25	26%	12.5	D	Taxiway	AC	ACRML
Jordan	T-12	2	q, f	11	4		3				15	3	17%	12.5	D	Taxiway	AC	ACRML
Laurel	A-3	45	f		12		4				12	4	25%	6	D	Apron	AC	ACAM
Laurel	R-4	45	f		12		4				12	4	25%	12.5	D	Runway	AC	ACRMU
Laurel	T-1	45			6	1			2		6	2.5	29%	14	D	Taxiway	AC	ACRMU
Laurel	T-2	45			6	1			2		6	2.5	29%	14	D	Taxiway	AC	ACRMU
Laurel	T-8	45	f		12		4				12	4	25%	12.5	D	Taxiway	AC	ACRMU
Laurel	T-9	45	f		12		4				12	4	25%	12.5	D	Taxiway	AC	ACRMU
Lewistown	A-1	15						7		2	APC	APC	APC	APC	P	Apron	APC	PCAA
Lewistown	A-2	15			6		2			2	6	2.5	29%	8	A	Apron	AC	ACPI
Lewistown	A-3A	15			U U		-		3	-	0	3	100%	8	В	Apron	AC	ACPL
Lewistown	R-23	15			11		3		-		11	3	21%	12.5	D	Runway	AC	ACRMU
Lewistown	B-32	15			10.5		6		5.5		10.5	8.5	45%	40	H	Runway	AAC	ACBH
Lewistown	B-33	15			10		3		2.5		10	3.5	26%	40	G	Runway	AC	ACBH
Lewistown	R-34	15			10 7	7	2		2.5		10	9.5	49%	40	н	Runway	AC	ACBH
Lewistown	T-1	15			6.25		5 75		2.0	3	6.25	7 25	54%	45	н	Taxiway	AAC	ACBH
Lewistown	T-4	15			0.20		0.70		3	Ũ	0.20	3	100%	12.5	F	Taxiway	AC	ACRMU
Lewistown	T-5	15			10		3		0	1	10	35	26%	40	G	Taxiway	AC	ACRH
Lewistown	T-7	15		6	4		3				10	3	23%	12 5	D D	Taxiway	AC	ACRMU
Lowistown	T-8	15		6	-		3				10	3	23%	12.5	р	Taxiway	AC	ACRMU
	T_Q	15		0			3				11	3	20%	12.5	D	Taxiway	AC	ACRMU
	T_10	15	f		۱۱ ۵		3				0	3	21/0	12.0		Taxiway		
	T_11	15	i f		9		3				9	2	25%	10	D	Taxiway		
Lewislowii	1-11	10	1		5		3				9	3	20/0	10	U	ianiway	70	

BRANCH NAME (Airport City)	Section	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Bas Cou (Inch (Agg)	se rse ies) (AC)	Surface Course (Inches) (BST) (AC) (PCC	C)	Overlay (Inches) (BST) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Libby	A-1	5			8		4		2	8	6	43%	23	Е	Apron	AAC	ACAM
Libby	A-2	5		6	2		4		2	8	6	43%	23	Е	Apron	AAC	ACAM
Libby	A-3	5		6	6		3		2	12	5	29%	60	G	Apron	AAC	ACAH
Libby	A-4	5		8	3		6			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Libby	A-5	5		6 6	6		6			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Libby	A-6	5					6			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Libby	R-1	5		8		2	2		1.2	8	4.6	37%	23	Е	Runway	AAC	ACRML
Libby	R-2	5		6	2		4		1.2	8	4.6	37%	23	Е	Runway	AAC	ACRML
Libby	T-2	5		6	6		3			12	3	20%	60	G	Taxiway	AC	ACRH
Libby	T-5	5	f		8		4			8	4	33%	23	Е	Taxiway	AC	ACRML
Libby	T-6	5	f		8		4			8	4	33%	23	Е	Taxiway	AC	ACRML
Lincoln	A-11	4		29	6.75		3			35.75	3	8%	12.5	D	Apron	AC	ACAM
Lincoln	A-2	4		29	6.75		3			35.75	3	8%	12.5	D	Apron	AC	ACAM
Lincoln	R-11	4		29	6.75		3			35.75	3	8%	12.5	D	Runway	AC	ACRML
Lincoln	T-11	4		29	6.75		3			35.75	3	8%	12.5	D	Taxiway	AC	ACRML
Livingston	A-11	6			6		4			6	4	40%	40	Н	Apron	AC	ACAH
Livingston	R-11	6			6		4			6	4	40%	40	Н	Runway	AC	ACRH
Livingston	T-11	6			6		4			6	4	40%	40	Н	Taxiway	AC	ACRH
Livingston	T-5	6		8	6		3			14	3	18%	30	G	Taxiway	AC	ACRH
Malta	A-1	3	g, f	14		2	2		2	14	4	22%	12.5	D	Apron	AC	ACAM
Malta	A-3	3	g, f	12	6		6			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Malta	A-4	3		14	4		4			18	4	18%	12.5	D	Apron	AC	ACAM
Malta	R-1	3	g, f	14			4		4	14	8	36%	12.5	Е	Runway	AC	ACRML
Malta	T-1	3	g, f	14			4		4	14	8	36%	12.5	Е	Taxiway	AC	ACRML
Malta	T-2	3	g, f	14			4		4	14	8	36%	12.5	Е	Taxiway	AC	ACRML
Miles City	A-2	11	f	11	4		3			15	3	17%	12.5	D	Apron	AC	ACAM
Miles City	A-3	11					5		1	0	5.5	100%	12.5	F	Apron	AC	ACAM
Miles City	A-3A	11	f	11	4		3			15	3	17%	28	D	Apron	AC	ACAM
Miles City	A-4	11	f	11	4		3			15	3	17%	12.5	D	Apron	AC	ACAM
Miles City	A-5	11					10)		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Miles City	R-12	11			19	9	4			19	13	41%	38	Н	Runway	AC	ACRH
Miles City	R-21	11	f		8		2.5			8	2.5	24%	24	D	Runway	AC	ACRMU
Miles City	T-1B	11			6		2.5		1 3	6	6	50%	12.5	E	Taxiway	AAC	ACRMU
Miles City	T-2A	11			6		2.5		1 3	6	6	50%	20	E	Taxiway	AAC	ACRMU
Miles City	T-3	11	f	11	4		3			15	3	17%	38	G	Taxiway	AC	ACRH
Miles City	T-3B	11	f		13		2.5			13	2.5	16%	38	G	Taxiway	AC	ACRH
Miles City	T-6	11	f		8		2.5			8	2.5	24%	24	D	Taxiway	AC	ACRMU
Miles City	T-7	11	f		8		2.5			8	2.5	24%	24	D	Taxiway	AC	ACRMU
Plains	A-1	4	f	8	3		3			11	3	21%	12.5	D	Apron	AC	ACAM
Plains	R-1	4	f	8	3		3			11	3	21%	12.5	D	Runway	AC	ACRML
Plains	T-1	4	f	8	3		3			11	3	21%	12.5	D	Taxiway	AC	ACRML
Plains	T-2	4	f	8	3		3			11	3	21%	12.5	D	Taxiway	AC	ACRML
Plentywood	A-11	11			8		3		3	8	6	43%	12.5	E	Apron	AAC	ACAM
Plentywood	R-11	11	f		9		4			9	4	31%	12.5	E	Runway	AC	ACRMU
Plentywood	T-11	11	f		9		4			9	4	31%	12.5	E	Taxiway	AC	ACRMU

BRANCH NAME (Airport City)	Section	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	Surface Course (Inches) (BST) (AC) (PCC)	Overlay (Inches) (BST) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Polson	A-11	10			12	3		12	3	20%	12.5	D	Apron	AC	ACAM
Polson	R-11	10	f		13	3		13	3	19%	12.5	D	Runway	AC	ACRMU
Polson	T-11	10	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Polson	T-12	10	f		13	3		13	3	19%	12.5	D	Taxiway	AC	ACRMU
Polson	T-14	10	f		12	3		12	3	20%	12.5	D	Taxiway	AC	ACRMU
Poplar	A-1	5		9	6	3		15	3	17%	12.5	D	Apron	AC	ACPL
Poplar	A-2	5		9	4	5		13	5	28%	12.5	D	Apron	PCC	PCAA
Poplar	A-3	5		9	4	5		13	5	28%	12.5	D	Apron	PCC	PCAA
Poplar	R-1	5		9	6	3		15	3	17%	12.5	D	Runway	AC	ACPL
Poplar	T-1	5		9	6	3		15	3	17%	12.5	D	Taxiway	AC	ACPL
Poplar	T-2	5		9	6	3		15	3	17%	12.5	D	Taxiway	AC	ACPL
Poplar	T-3	5		9	6	3		15	3	17%	12.5	D	Taxiway	AC	ACPL
Ronan	A-11	4	f	8.5	6	2.5		14.5	2.5	15%	20	D	Apron	AC	ACAM
Ronan	A-12	4	f	8.5	6	2.5		14.5	2.5	15%	20	D	Apron	AC	ACAM
Ronan	R-11	4	f	8.5	6	2.5		14.5	2.5	15%	20	D	Runway	AC	ACRML
Ronan	T-5	4	f		14.5	3		14.5	3	17%	13	D	Taxiway	AC	ACRML
Ronan	T-11	4	f	8.5	6	2.5		14.5	2.5	15%	20	D	Taxiway	AC	ACRML
Roundup	A-1	5			10	1	2	10	2.5	20%	14	D	Apron	AC	ACAM
Roundup	A-2	5			10	2	2	10	4	29%	22	D	Apron	AAC	ACAM
Roundup	R-1	5			10	2	2	10	4	29%	22	D	Runway	AAC	ACRML
Roundup	T-1	5			10	1	2	10	2.5	20%	14	D	Taxiway	AC	ACRML
Roundup	T-3	5			8	3		8	3	27%	12.5	D	Taxiway	AC	ACRML
Scobey	A-11	4		8	6	4		14	4	22%	12.5	D	Apron	AC	ACAM
Scobey	A-12	4	g	6	6	4		12	4	25%	12.5	D	Apron	AC	ACAM
Scobey	R-11	4		6	6	4		12	4	25%	12.5	D	Runway	AC	ACRML
Scobey	R-12	4			14	4		14	4	22%	12.5	D	Runway	AC	ACRML
Scobey	T-11	4		6	6	4		12	4	25%	12.5	D	Taxiway	AC	ACRML
Scobey	T-12	4			14	4		14	4	22%	12.5	D	Taxiway	AC	ACRML
Scobey	T-13	4			10	4		10	4	29%	12.5	D	Taxiway	AC	ACRML
Shelby	A-21	8		18	6	3		24	3	11%	12.5	D	Apron	AC	ACAM
Shelby	A-22	8	g, f	18	4	6		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Shelby	R-21	8		18	14	3		32	3	9%	12.5	D	Runway	AC	ACRMU
Shelby	R-22	8		18	14	3		32	3	9%	12.5	D	Runway	AC	ACRMU
Shelby	T-6	8		8	4	3		12	3	20%	12.5	D	Taxiway	AC	ACRMU
Shelby	T-17	8	f	18	4	3		22	3	26%	12.5	D	Taxiway	AC	ACRMU
Shelby	T-21	8	f	18	6	3		24	3	11%	12.5	D	Taxiway	AC	ACRMU
Shelby	T-22	8	f	18	6	3		24	3	11%	12.5	D	Taxiway	AC	ACRMU
Sidney	A-3A	25	f		10	4		10	4	29%	25	D	Apron	AC	ACAM
Sidney	A-11	25	f		8	8		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Sidney	A-12	25	f		10	4		10	4	29%	40	G	Apron	AC	ACAH
Sidney	A-13	25	f		10	4		10	4	29%	40	G	Apron	AC	ACAH
Sidney	A-14	25	f		8	8		PCC	PCC	PCC	PCC	P	Apron	PCC	PCAA
Sidney	A-15	25	f	_	6	6		PCC	PCC	PCC	PCC	P	Apron	PCC	PCAA
Sidney	R-11	25		6	3	2 4	4.5	9	9.5	51%	40	н	Runway	AAC	ACRH
Sidney	R-12	25		6	6	2 4	4.5	12	9.5	44%	40	H	Runway	AAC	ACRH
Sidney	T-2	25			6	4	4.5	6	8.5	59%	40	Н	Taxiway	AAC	ACRH
Sidney	T-4	25		16	6	4		22	4	15%	40	G	Taxiway	AC	ACRH

BRANCH NAME (Airport City)	Sectior	Approx. Annual Operations	Geo- Grid / Fabric (g / f)	Sub- base (Inches) (Agg)	Base Course (Inches) (Agg) (AC)	Si C (BST)	urface ourse (Inches) (AC) (PCC)	Overlay (Inches) (BST) (AC) (PFC)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000 Ibs.)	Section Cate- gory	Branch Use	Surface Type	FAMILY
Stanford	A-2	4			8		3		8	3	27%	12.5	D	Apron	AC	ACAM
Stanford	R-2	4			12	1		3	12	3.5	23%	12.5	D	Runway	AC	ACRML
Stanford	R-3	4			8		3		8	3	27%	12.5	D	Runway	AC	ACRML
Stanford	T-2	4			8		3		8	3	27%	12.5	D	Taxiway	AC	ACRML
Stevensville	A-1	13			5.5	1.8		1	5.5	1.4	20%	12.5	D	Apron	ST	STPA
Stevensville	A-2	13			6		2		6	2	25%	12.5	D	Apron	AC	ACAM
Stevensville	R-1	13			5.5	1.8		1	5.5	1.4	20%	12.5	D	Runway	ST	STPA
Stevensville	T-1	13			5.5	1.8		1	5.5	1.4	20%	12.5	D	Taxiway	ST	STPA
Stevensville	T-3	13			6		2		6	2	25%	12.5	D	Taxiway	AC	ACRMU
Stevensville	T-4	13		12	4		3		16	3	16%	12.5	D	Taxiway	AC	ACRMU
Superior	A-11	4		9	6		3		15	3	17%	12.5	D	Apron	AC	ACAM
Superior	A-12	4		9	6		3		15	3	17%	12.5	D	Apron	AC	ACAM
Superior	R-11	4		9	6		3		15	3	17%	12.5	D	Runway	AC	ACRML
Superior	T-11	4		9	6		3		15	3	17%	12.5	D	Taxiway	AC	ACRML
Terry	A-11	1			11.5		2.5		11.5	2.5	18%	12.5	D	Apron	AC	ACAM
Terry	R-11	1			11.5		2.5		11.5	2.5	18%	12.5	D	Runway	AC	ACRML
Terry	T-11	1			11.5		2.5		11.5	2.5	18%	12.5	D	Taxiway	AC	ACRML
Thompson Falls	A-1	7			6	1.5		2	6	2.75	31%	12.5	Е	Apron	AC	ACAM
Thompson Falls	A-2	7			4		2.5		4	2.5	38%	12.5	Е	Apron	AC	ACAM
Thompson Falls	R-1	7			6	1.5		2	6	2.75	31%	12.5	Е	Runway	AC	ACRMU
Thompson Falls	R-2	7			4		2.5		4	3.25	45%	12.5	Е	Runway	AC	ACRMU
Thompson Falls	T-4	7			4		2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Thompson Falls	T-5	7			4		2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Thompson Falls	T-6	7			4		2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Three Forks	A-1	12			4		2.5	2	4	4.5	53%	12.5	E	Apron	AAC	ACAM
Three Forks	A-2	12					6		PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
Three Forks	R-1	12			4		2.5	2	4	4.5	53%	12.5	Е	Runway	AAC	ACRMU
Three Forks	R-2	12			4		2.5	2	4	4.5	53%	12.5	Е	Runway	AAC	ACRMU
Three Forks	T-1	12			4		2.5	2	4	4.5	53%	12.5	Е	Taxiway	AAC	ACRMU
Three Forks	T-2	12			4		2.5	2	4	4.5	53%	12.5	Е	Taxiway	AAC	ACRMU
Three Forks	T-3	12			4		2.5	2	4	4.5	53%	12.5	Е	Taxiway	AAC	ACRMU
Three Forks	T-4	12			4		2.5		4	2.5	38%	12.5	Е	Taxiway	AC	ACRMU
Townsend	A-1	5			4		3	2	4	5	56%	12.5	Е	Apron	AAC	ACAM
Townsend	R-1	5			4		3	2	4	5	56%	12.5	Е	Runway	AAC	ACRML
Townsend	T-1	5			4		3	2	4	5	56%	12.5	Е	Taxiway	AAC	ACRML
Townsend	T-2	5			12		4		12	4	25%	12.5	D	Taxiway	AC	ACRML
Turner	A-1	4	f	22	6		3		28	3	10%	12.5	D	Apron	AC	ACAM
Turner	R-1	4	f	22	6		3		28	3	10%	12.5	D	Runway	AC	ACRML
Turner	T-2	4	f	22	6		3		28	3	10%	12.5	D	Taxiwav	AC	ACRML
Turner	T-3	4	f	22	6		3		28	3	10%	12.5	D	Taxiwav	AC	ACRML
Twin Bridaes	A-1	3			11	1		1.8	11	2.3	17%	12.5	D	Apron	AC	ACAM
Twin Bridges	R-1	3			11	1		1.8	11	2.3	17%	12.5	D	Runway	AC	ACRML
Twin Bridges	T-1	3			11	1		1.8	11	2.3	17%	12.5	D	Taxiway	AC	ACRML

BRANCH NAME (Airport City)	Section	Approx. Annual Operations	Geo- Grid / Fabric	Sub- base (Inches)	Base Course (Inches)	Surface Course (Inches)	Overla (Inche	ay s)	Gravel Depth	Asphalt Depth	% Asphalt Depth	Pvmnt Strngth (1,000	Section Cate- gory	Branch Use	Surface Type	FAMILY
		(1000)	(g / f)	(Agg)	(Agg) (AC)	(BST) (AC) (PCC)	(BST) (AC)	(PFC)				lbs.)				
West Yellowstone	A-1	7			8	3			0	11	100%	90	I.	Apron	AC	ACAH
West Yellowstone	A-2	7				1.5			0	1.5	100%	30	F	Apron	AC	ACAM
West Yellowstone	A-3	7			7	4			0	11	100%	90	I I	Apron	AC	ACAH
West Yellowstone	A-4	7			6	1		2	6	1.5	20%	30	D	Apron	AC	ACAM
West Yellowstone	A-5	7		32		16			PCC	PCC	PCC	PCC	Р	Apron	PCC	PCAA
West Yellowstone	R-1	7			7	2.5	3		0	12.5	100%	105	I	Runway	AAC	ACRH
West Yellowstone	R-2	7			8	3	3		0	14	100%	90	I	Runway	AAC	ACRH
West Yellowstone	T-1	7			8	3			0	11	100%	90	I	Taxiway	AC	ACRH
West Yellowstone	T-2	7			4	3			4	3	43%	12.5	E	Taxiway	AC	ACRMU
White Sulphur Sprin	A-11	6			10	3.5			10	3.5	26%	16.5	D	Apron	ST	STPA
White Sulphur Sprin	R-11	6			8	3.5			8	3.5	30%	16.5	Е	Runway	ST	STPA
White Sulphur Sprin	R-12	6			5	2	2		5	4	44%	16.5	Е	Runway	AC	ACRMU
White Sulphur Sprin	T-1	6			8	1		1	8	2	20%	12.5	D	Taxiway	ST	STPA
White Sulphur Sprin	T-2	6			4	3		1	4	4	50%	12.5	Е	Taxiway	AC	ACRMU
White Sulphur Sprin	T-11	6			10	3.5			10	3.5	26%	16.5	D	Taxiway	AC	ACRMU
White Sulphur Sprin	T-12	6			4	2	3	1	4	6	60%	16.5	E	Taxiway	AC	ACRMU
Wolf Point	A-5	5			15	3	1.5		15	3	17%	18	D	Apron	AC	ACAM
Wolf Point	R-11	5		9	14	4			23	4	15%	38	G	Runway	AC	ACRML
Wolf Point	T-1	5			14	4	1.5 4		12.5	4.75	28%	38	G	Taxiway	AC	ACRH
Wolf Point	T-2	5			14	4	0.3 3		5	9.125	65%	38	Е	Taxiway	AAC	ACRML
Wolf Point	T-3	5			14	4			10	2.5	20%	38	D	Taxiway	AC	ACRML
Wolf Point	T-4	5			15	3	1.5		15	3	17%	18	D	Taxiway	AC	ACRML

NOTES:

Italic font indicates the airport was neither inspected nor mapped for this report, as such the included information is suspect. If construction has taken place it will not be reflected in this report. Section properties & families are assumed from the most current pre-2006 pavements.

(Agg)=AGGREGATE (AC) = ASPHALT CEMENT CONCRETE (BST) = BITUMINOUS SURFACE TREATMENT (PCC) = PORTLAND CEMENT CONCRETE (PFC) = POROUS FRICTION COURSE

Figures 2.3 through **2.10** illustrate the family analysis curves for the eight families defined in this project. These curves are based on actual data from pavement condition surveys spanning 1988-2009. In some cases, pavements were filtered out of the curve analyses when they fit poorly with the other data within the family, when there was a known atypical repair to specific pavements, or simply using good engineering judgment about the possible quality versus pavement age. **Table 2.5** shows the assumed acceptable extreme PCI's used as boundary filters for most family data.

Age	Minimum PCI	Maximum PCI
0	90	100
3	58	100
5	36	95
15	0	90
20	0	86
25	0	70
30	0	54
40	0	20

TABLE 2.5
PCI vs. AGE - ALLOWABLE EXTREMES/BOUNDARIES

Figures 2.3 through **2.10** show life cycle curves for each family as well as "valid" data points used to construct the curve, "out of bounds" data points, and "outliers" not used in the curve fit. Note that MicroPAVER uses the dashed linear projection rather than the curve for ages greater than sampled ages in the family. The lower right corner of each graph contains the family curve equation, as well as the "critical PCI" where the rate of deterioration increases markedly.

FAMILY LIFE CYCLE CURVES FIGURE 2.3 ACPL - Asphalt Pavements with less than 12,500 lb. Load Rating

PCI

100-8 0 0 90 0 0 ** 0 ଡ 80-0 70-8 60-50-0 0 0 40-0 0 0 30-0 20-0 10-0 25 30 15 20 35 0 5 10 Age (Years)

FIGURE 2.4 STPA - Bituminous Surface Treated Pavements of All Load Ratings

FIGURE 2.5 ACAH - Asphalt Aprons With Higher Than 30,000 lb. Load Rating

Page 2-22

FIGURE 2.6 ACRH - Asphalt Runways And Taxiways With Higher Than 30,000 lb. Load Rating

FIGURE 2.7

ACRML - Asphalt RWs And TWs, Load Rating 12,500 To 30,000 lb, 5000 or Fewer Ops.

FIGURE 2.8 ACRMU -Asphalt RWs And TWs, Load Rating 12,500 To 30,000 lb, Over 5000 Ops.

FIGURE 2.9

Page 2-24

FIGURE 2.10 PCAA - Portland Concrete Cement - All Sections

Figure 2.11 illustrates a theoretical pavement life cycle, and some very general observations about renovation costs throughout the pavement's life. The critical PCI is at the crest of the curve where continued maintenance begins to be less economical than reconstruction.

FIGURE 2.11 PAVEMENT LIFE CYCLE

Page 2-25

CHAPTER 3 RESULTS AND RECOMMENDATIONS

3.1 Family Analysis Curves

Pavement families for this analysis are slowly evolving from the consistent 1988-1997 family groups. The families are designed to group similar pavements based on material type, primary use, design strength, and annual operations within the context of the current pavement design and maintenance norms. The core of the original family groupings have been retained since they are providing increasingly stable and accurate predictors of Montana airport pavement behavior. With pavement maintenance norms changing the database's oldest pavement's behavior is no longer an accurate predictor of future condition. So, inspection data from abandoned, demolished, and non-maintained sections are no longer included in the family curve determinations. These dropped inspections are no longer representative "typical" sections and there are sufficient inspections to provide statistical validity without these data points. The two original surface treatment families were combined into a single family in 2006, and remain so this year, since very few of these pavements remain. Likewise, pavements with design loads under 12,500 pounds are now rarely constructed, so the dwindling remnants of these "light" pavements have been grouped into a single family, regardless of their use. Comparison of the family curves from 1991 to the present provides some insight into the appropriateness of the family definition criteria, and the likely long-term usefulness of the curves. (See Figure A.1 of the Appendix)

2012 family ACPL (Asphalt Concrete, All Pavements, Low Strength) combined former families ACAL and ACRL, light duty asphalt aprons and runway/taxiways, respectively. FAA policies no longer encourage constructing asphalt pavements with design loads less than 12,500 pounds, so the remaining members of this shrinking family are upgraded to medium strength whenever reconstruction or maintenance is required. The family exhibits about 5 years of rapid aging followed by 15 years of slower decline. After approximately 20 years of acceptable performance, the family curve passes through a critical PCI of 50 and begins a rapidly accelerating decline in pavement quality. A good deal of scatter in ACPL data indicates variations in construction quality, maintenance, use, and climate. Improving maintenance practices are documented by a raised graph in the 5-10 year range. Additional inspections of older pavements show slightly better performance than predicted in 2006 and 2009.

2012 family STPA (Surface Treatment, All Pavements, All Strengths) has the same basic shape as the 2009 curve, but returns to the "55" critical PCI of 2003 and marginally extends the decaying performance. The bulk of the data for this family comes from pavements 15-years old or less, with only two airports continuing to contribute data for pavement over 20-years of age. These relatively low-strength pavements exhibit a fairly uniform rate of deterioration through their first 10 years, followed by a 10-year plateau, giving just over 20-years of usable life before rapidly declining to an unserviceable condition. Double- and triple-shot surfaces continue to be replaced by dense-grade mixes, decreasing the pool of family members.

2012 family ACAH (Asphalt Concrete, Aprons, High Strength) is a statistically small, scattered data set with most of its data in the first 20 years. High strength aprons exhibit the same rapid aging over the initial 12-years as other aprons, but are projected to have nearly 30 years of good quality performance, rather than the 15 to 20 years predicted for lower design

strength pavements. Family ACAH predicts 30 years of good, usable pavement life before the accelerated aging after critical PCI of 55. However, all data for pavements in this family older than 20-years are from Benchmark and Yellowstone Airports, both of which are protected from much of our winter freeze-thaw cycling by a blanket of snow and sustained cold temperatures. The end-of-life behavior promised by this family curve will be representative of these "special case" airports, but is likely 5 to 10 years overly optimistic for the remaining family members.

2012 family ACRH (Asphalt Concrete, Runways/Taxiways, High Strength) shows very consistent curves from 2000 through 2012. A large number of sections (50) helps to stabilize this family curve for the first 22 years. Most ACRH data beyond 25 years is from Benchmark Airport, where the transition past critical PCI into rapid deterioration has occured. The long usable life demonstrated at Benchmark is probably not realistic for the other airports of this family that are exposed to consistently greater use and are not generally protected by a wintertime blanket of snow. Rather than the approximate 30- to 35-years of usable life predicted by ACRH, most pavements in this family will probably expect about 25 years above their critical PCI of 50.

2012 family ACRML (Asphalt Concrete, Runways/Taxiways, Medium Strength, Light Use) show better than average performance over the first 10 years of life, the results of preventative maintenance programs in common application across the State. Most of the pavements in this family have been crack sealed and fog sealed or overlaid since the previous inspection. This is one of the largest sets in the database, and the pavement behavior is quite uniform -- boundary limits are not used when establishing this family and only 2.6% of the data is removed as "outliers." ACRML shows an initial decline in PCI over the first 10 years and then transitions to a very slow aging rate for the next 18 years; maintaining a PCI over 70 for the majority of this time. These pavements can expect about 35-years of useable life above their critical PCI of 60.

2012 family ACRMU (Asphalt Concrete, Runways/Taxiways, Medium Strength, Busy Use) shows a pronounced preventative maintenance "bump" in the 5- to 10-year range of the life cycle curve. All boundary filters and most of the statistical filtering were removed from this data-rich family since the few irregularities have virtually no statistical significance. ACRMU pavements, as a group, are the busiest and best maintained pavements in the GA airport system. Changes in maintenance strategies and funding resulted in nearly every ACRMU pavement that was inspected showing signs of recent preventative maintenance. This maintenance appears to be producing a consistently better quality pavement, in addition to significantly extending the pavements' usable life. This family projects over 20 years of good service before passing the critical PCI of 50 and beginning rapid aging.

2012 family ACAM (Asphalt Concrete, Aprons, Medium Strength) has good high-density data for 20-years of pavement behavior. This data has consistently shown a near-linear decline in quality with age, rather than the typical asphalt "plateau" separating two rapid drops. The pattern is clear, even though the graph is not what is usually expected. This family has a couple airports with PCIs rated below 30 at less than 10 years of age, and a couple pavements that were recently sealed resulting in temporarily elevated PCI's that were filtered out of the data set. A wide dispersion of data points suggests that pavements within these families are following different aging patterns, possibly because of differences in construction quality, maintenance practices between airports, varied wear and traffic loads, or because of other design, or

environmental conditions. A linear decline in quality typically indicated heavy wear and hard use.

2012 family PCAA (Portland Cement, Aprons, All Strengths) displays a 45-year decline to PCI 50 based on many concrete aprons across the State. Cut Bank Airport's ramp provided expected PCI's for 46- to 52-years, before they started replacing slabs and no longer represented "typical" aging. Further, the heavy design strength and relatively light usage of Cut Bank Airport's main apron may not give an accurate projection for less "over-designed" slabs. Engineering judgment would indicate a PCAA life span for concrete regularly exposed to it's design loads to be about 35 years.

3.2 PCI Predictions

Pavement Condition Index values were predicted for one, five, and ten years into the future for all pavements in the database, using the previously discussed pavement families: ACPL, ACAM, ACRML, ACRMU, ACAH, ACRH, STPA, and PCAA. The MicroPAVER software predicts PCI's by taking the last inspected PCI value, finding the corresponding PCI value on the family curve for that pavement, and assuming the particular pavement ages in the same way the family curve declines. Graphically, the family curve is moved horizontally until it lies on top of the last inspected PCI-verses-age point, then the family curve is followed forward.

FIGURE 3.1 MICROPAVER PCI PREDICTION PROCESS

Table 3.1 shows inspected PCI values for all pavement sections included in the Montana airport pavement database. It also includes predicted PCI values for the years 2013, 2018, and 2023, based on the last inspected PCI-verses-age for each airport and the 2012 family curves. PCI's calculated from inspections are separated from projected estimates by a "critical PCI" unique to the pavement family. Pavements above their critical PCI can be economically maintained, while those "below critical" have begun rapid decay and are typically reconstructed. The "critical PCI" is the pavement condition rating (PCI value) shortly before the family curve predicts a dramatic decrease in pavement quality.

Older PCI values for a pavement section are replaced with "XX" whenever the pavement is demolished and reconstructed. 2012 PCI inspections were not conducted on a number of airports that were reconstructed or rehabilitated since the 2009 survey, nor were inspections completed on a few airports with an extended period of maintenance inactivity. Airports not inspected in 2012 are shown in italics - please realize that predictions for these airports may not reflect their current conditions.

3.3 System-Wide Pavement Conditions

MicroPAVER uses current PCI values as a starting point on the pavement section's family curve, and then continues down the family curve to project PCI's in the future. The constrained "best-fit" life cycle curves generated for each family are valid only to the age for which there is survey data, after which they assume a straight-line projection of the curve's slope (shown with dashed lines on the family curves). An Excel spreadsheet was used to summarize, organize, and enhance the presentation of MicroPAVER-processed information into system-wide pavement condition ratings (**Figure 3.2**). The Pavement Condition Ratings shown are area-weighted to portray the percentage of 2012-surveyed Montana airport pavement area falling into each rating class. Square footages for each pavement section were accumulated into one of seven Pavement Condition Ratings, based on their inspected or predicted PCI values, and the rating scale shown in Figure 2.2, Step 8. The pavement area in each condition rating distribution of Pavement Condition Ratings shown in Figure 3.2 projects a representative aging of all inspected airport pavements given continued maintenance practices, but no major rehabilitation or reconstruction.

The data in Table 3.1 and Figure 3.2 both show unequivocally that if reconstruction programs on Montana airports were suspended or discontinued, airport pavements would degrade to marginal serviceability within about 10 years. While there are many finer points to be gleaned from the graph of system-wide pavement condition ratings (Figure 3.2), splitting the pavement ratings into three groups (below fair, fair, and above fair) will help translate the extensive data set to more comprehensible insights.

		Section	Constr.	Family			Sur	veyed I	PCIs			Critical	Pred	icted P	CIs
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
Anaconda	A-1	49,140	1992	ACAM	96	84		81	77	58	64	50	63	53	45
Anaconda	A-2	84,000	1993	ACAM	94	92		74	64	61	41	50	40	23	10
Anaconda	R-1	450,000	2009	ACRML	97	88		82	66	99	90	60	87	74	70
Anaconda	R-2	271,200	1993	ACRML	99	95		XX	XX	ΧХ	85	60	83	72	68
Anaconda	T-1	108,800	2009	ACRML	XX	XX		XX	XX	96	83	60	81	71	68
Anaconda	T-1A	15,450	1992	ACRML	99	96		87	79	77	60	60	58	37	21
Anaconda	T-22	21,000	2010	ACRML	XX	XX		XX	XX	ΧХ	92	60	89	75	70
Anaconda	T-4	8,925	1985	ACRML	71	50		XX	XX	XX	84	60	82	72	68
Anaconda	T-5	12,075	1993	ACRML	97	94		88	68	67	70	60	69	66	58
Anaconda	T-6	35,840	2010	ACRML							95	60	92	77	71
Baker	A-2A	120,000	1992	ACAM	XX	93	83	77	79	70	72	50	70	60	53
Baker	A-3A	14,700	1992	ACPL		100	82	76	75	69	69	50	67	59	54
Baker	A-5	40,000	1997	ACAM		100	88	86	62	66	66	50	64	55	47
Baker	A-6	14,994	1997	PCAA		100	88	81	59	56	65	45	64	59	56
Baker	A-7	12,885	2001	ACAM				90	80	79	77	50	75	64	56
Baker	A-9	23,056	2012	ACAM							100	50	97	79	69
Baker	R-1	367,500	2012	ACRMU	XX	XX	XX	XX	XX	XX	100	50	67	81	73
Baker	R-2 T ₄	75,000	2012	ACRMU	00	00	00		74	00	100	50	98	83	/1
Baker	I-1 T 0	33,750	2001	ACRMU	98	55	69 FF	88	74	69 70	75	50	74	65	59
Baker	1-2 T o	137,200	2001	ACRMU	97	74	55	85	75	73	73	50	/2	64 70	57
Baker	1-3 T 4	53,620	2001	ACRMU	94	66	50	94	76	79	85	50	83	72	65
Baker	1-4 T c	45,415	1997	ACRMU		100	88	87	79	75	12	50	/1	63	55
Baker	1-5	45,850	2012	ACRMU			E A	10	04	22	100	50	98	83	/1
Benchmark	A-IA	22,500	1966	ACAH			54	40	34	33		55	10	0	0
Benchmark	A-IB	45,000	1966	ACAH			45	42	22	17		55 50	17	0	0
Benchmark		465,000	1966	ACRH			59	51	30	29		50	17	0	0
Benchmark	R-2A	75,000	1966	ACRH			50 54	23 40	33	28		50	10	0	0
Benchmark	R-2D T 1	10,000	1966	ACRH			54	42	21	20		50	13	0	0
Berichmark Big Sondy	I-I A 1	13,500	1900				50	42	34	33	Λ	50 45	21	3	0
Dig Sanuy Dig Sandy	A-1	5,760	1900				04	30	0	2	4	40	06	70	60
Big Sandy	A-2 D 11	210,400	2010			vv	vv	vv	vv	vv	100	50	00	00	00 72
Big Sandy	п-н то	219,000	1002		100	70	60	61	61	50	50	50	90 70	60	55
Big Sandy	T-2	16 600	2010		100	12	03	01	04	55	07	50	05	78	68
Big Timber	Δ_1	40,000	1996	ACAM	XX		۹N	87	86	61	78	50	76	64	57
Big Timber	Δ_2	23 750	1996	ΔΟΔΜ	~~~		90	85	86	61	84	50	81	69	61
Big Timber	R-1	348 750	1996	ACRMU	xx		91	87	78	67	58	50	77	68	62
Big Timber	R-2	47 625	1996	ACRMU	777		95	90 90	86	71	79	50	77	68	62
Big Timber	T_1	4 650	1996	ACRMU	XX		89	75	74	53	53	50	51	37	21
Big Timber	T-2	39,600	1996	ACRMU	XX		83	73	67	55	68	50	67	59	50
Big Timber	T-3	13 750	1996	ACRMU	707		90	85	78	73	74	50	73	64	58
Big Timber	T-4	85,365	2003	ACRMU			00	00	93	83	76	50	74	66	59
Big Timber	T-5	35 020	2003	ACRMU					89	76	73	50	72	63	57
Broadus	A-1	99,855	2005	ACAM					00	86	95	50	92	76	66
Broadus	R-1	330,000	2005	ACRMI						85	92	60	89	75	70
Broadus	T-1	45 500	2005	ACRMI						89	94	60	91	76	70
Chester	A-5	96 824	1997	ACAM			82	76	74	54	64	50	63	54	46
Chester	A-11	42 706	2010	ACAM			02	/0	14	04	100	50	97	79	69
Chester	B-3	345 000	1997	ACRMI			91	81	79	65	87	60	85	73	69
Chester	T-2	10,850	1997	ACRM			89	77	74	57	81	60	79	71	68
Chester	T-3	16,825	1997	ACRM			85	79	79	61	66	60	65	54	37
Chester	T-4	3 250	2010	ACRM			00	, 5	, 5	01	100	60	97	80	72
Chester	T-13	17 600	2010	ACRM							95	60	92	77	71
Chinook	A-1A	92 627	1991	ACAM		64	65	62		52	53	50	51	41	20
Chinook	A-1B	39 000	2006	ACAM		54	00	52		82	86	50	87	72	64
Chinook	R-1	300 000	2006	ACRMU		xx	χx	xx		87	85	50	83	72	65
Chinook	T-1	103.075	2006	ACRMU		XX	XX	XX		92	89	50	86	74	67

		Section	Constr.	Family			Sur	veyed F	PCIs			Critical	Pred	icted P	'CIs
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
Choteau	A-1	46,336	2001	ACAM	XX			91	88	82	83	50	81	68	60
Choteau	R-11	198,000	2001	ACRML	XX			92	85	78	76	60	75	69	66
Choteau	R-12	24,000	2001	ACRML	XX			88	88	79	78	60	76	70	67
Choteau	R-2	375,000	2001	ACRML				83	81	78	78	60	76	70	67
Choteau	T-1	38,760	2001	ACRML	XX			81	84	81	76	60	75	69	66
Choteau	T-2	35,560	2001	ACRML				89	87	79	78	60	76	70	67
Circle	A-1	27,000	2007	ACAM	76	61	60	48		65	67	50	65	56	48
Circle	A-2	34,860	2007	ACAM	87	56	57	53		66	68	50	66	57	49
Circle	R-11	307,500	2007	ACRML						88	88	60	85	73	69
Circle	T-1	2,900	2007	ACRML	82	76	63	45		84	78	60	76	70	67
Circle	T-2	2,900	2007	ACRML	74	60	58	39		83	80	60	78	70	67
Colstrip	A-1	66,000	2008	ACAM	87	68	64	64	30	90	91	50	88	73	64
Colstrip	R-1	382,500	2008	ACRMU	88	65	66	72	47	97	92	50	89	76	71
Colstrip	T-1	27,300	2008	ACRMU	77	70	53	53	25	93	94	50	91	77	71
Colstrip	T-2	19,600	2008	ACRMU	96	71	69	75	55	90	94	50	91	77	71
Columbus	A-1	77,012	1998	ACAM				79	80	59	68	50	66	59	49
Columbus	R-1	285,000	1998	ACRMU				85	81	67	72	50	71	63	55
Columbus	T-1	76,575	1998	ACRMU				92	84	57	77	50	75	67	60
Columbus	T-2	14.640	1998	ACRMU				90	82	68	82	50	80	70	64
Columbus	T-3	45.275	2001	ACRMU				88	83	60	75	50	73	65	58
Conrad	A-1	95.000	2002	ACAM	ХХ	XX		77	76	76	75	50	73	63	55
Conrad	B-3	345,000	2002	ACRMI	XX	XX		95	76	76	72	60	71	67	63
Conrad	T-4	23.040	2002	ACRMI	XX	XX		86	88	80	62	60	61	41	25
Culbertson	A-1	47.000	1993	ACAM	XX	XX	XX	XX	XX		96	50	93	76	67
Culbertson	A-2	28 085	2009	ACAM	,	701	701	,	,		99	50	96	78	68
Culbertson	R-1	180,000	1993	ACRMI	xx	xx	xx	xx	xx		99	60	96	79	72
Culbertson	R-2	48 000	1993	ACRMI	XX	XX	XX	XX	XX		98	60	94	78	71
Culbertson	T_1	25 000	1000		XX	XX	XX	XX	XX		Q1	60	88	75	70
Culbertson	T-2	25,000	1000		XX	XX	XX	XX	XX		97	60	94	78	71
Cut Bank	Δ_1	102 000	1942	PCAA	28	40	19		33	29	27	45	25	70 Q	0
Cut Bank	R_1	397 500	1092		20	78			67	63	21	50	57	18	32
Cut Bank	R-21	437,850	2007	ACRMU	XX	XX	XX		XX	93	03	50	91 91	77	70
Cut Bank	T-1	34 125	1990	ACRMU	93	85	77		54	53	25	50	23	2	, 0
Cut Bank	T-2	92 000	1990	ACRMU	90	86	79		63	58	43	50	41	23	6
Cut Bank	T_4	156 800	1000	ACRMU	aa	90	84		68	59	57	50	56	11	30
Cut Bank	T-5	104 013	2000		55	50	100		67	72	37	50	35	15	0
Cut Bank	T-6	19 600	2000	ACRMU			100		07	96	100	50	98	82	73
	Δ.3	55 310	1996			95	88	82		62	41	50	30	23	10
Deer Lodge	Δ_4	15 904	1996	ΔΟΔΜ		03 00	92	86		69	57	50	56	46	36
Deer Lodge	Δ-5	73 312	1905	ΔΟΔΜ		50	52	00		00	88	50	85	71	63
Deer Lodge	R-3	330,000	1005			01	85	80		90	77	60	75	60	66
Deer Lodge	R-4	59 987	2006			51	00	00		02	80	60	78	70	67
Deer Lodge	T_1R	5 302	1007				90	78		92 80	83	60	80	70	68
Deer Lodge	T 2	21 000	1007			01	90	70		03	67	60	66	50	11
Deer Louge	1-2	00.050	1004		100	91	01	74	6E	00	07	50	00	30 77	67
Dillon	A-3	92,200	1994		100	00	04	79	00	90	97	50	94	60	62
Dillon	Α-4	102 560	2002					90	0/	92	00	55	02	67	03 50
Dillon		195,509	2008				01	00	01	94	70	50	71	67	59
Dillon	R-3	407,400	1998	ACRIVIU			91	90	01	01	60	50	/1	63	55
Dillon	R-4	179,000	1998	ACRIVIU			76	84	82	00	09	50	68	00 75	52
Dillon	R-21	1/8,680	2009	ACRIVIU	100	00	00	70	00	98	90	50	88	75	60
Dillon	T-2	16,510	1994	ACRIMU	100	88	82	76	68	96	85	50	83	72	65
Dillon	T-3	212,275	1998	ACRIMU			84	88	85	80	68	50	67	59	50
Dillon	1-4 T.c	26,575	2002	ACRIMU				95	88	96	86	50	84	73	66
Dillon	1-5	33,288	2009	ACRMU						97	89	50	87	/4	67

		Section	Constr.	Family			Sur	veyed F	PCIs			Critical	Pred	icted P	'CI s
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
Ekalaka	A-1	100.000	2004	ACAM	95	66	58	55	89	86	89	50	86	72	63
Ekalaka	R-1	249,150	2004	ACRML	97	73	50	48	92	83	90	60	87	74	70
Ekalaka	R-11	35,850	2004	ACRML	88	56	55	39	84	79	90	60	87	74	70
Ekalaka	T-1	73,500	2004	ACRML	88	56	55	39	92	85	90	60	87	74	70
Ekalaka	T-11	29,556	2004	ACRML	88	56	55	39	86	80	88	60	85	73	69
Ennis	A-1	112,350	1990	ACAM	92	93	87	84	54		75	50	73	62	55
Ennis	A-2	88,128	1992	ACAM	92	89	88	78	66		68	50	66	57	49
Ennis	R-11	370,100	2008	ACRMU	XX	XX	XX	ХХ	XX		90	50	88	78	66
Ennis	T-1	96,425	1990	ACRMU	94	96	87	85	66		76	50	74	66	59
Ennis	T-2	117,775	1992	ACRMU	95	95	77	77	58		50	50	48	32	16
Eureka	A-1	76,125	2010	ACAM	ΧХ	ΧХ	ΧХ		ΧХ	XX	93	50	90	74	65
Eureka	R-1	315,000	2010	ACRML	ΧХ	XX	ΧХ		XX	XX	93	60	90	76	70
Eureka	T-1	56,700	2010	ACRML	ΧХ	ΧХ	ΧХ		XX	XX	97	60	94	78	71
Eureka	T-2	42,000	2010	ACRML	ΧХ	ΧХ	ΧХ		XX	XX	96	60	93	77	71
Eureka	T-3	60,000	2002	ACRML					96	74	69	60	68	64	54
Eureka	T-4	17,500	2002	ACRML					94	78	65	60	64	49	33
Eureka	T-5	6,200	1991	ACRML	ΧХ	ΧХ	ΧХ		XX	XX	76	60	74	69	66
Forsyth	A-1	89,640	1994	ACAM			69	74	69	25	26	50	23	7	0
Forsyth	R-1	360,000	1994	ACRMU			71	81	71	56	54	50	52	38	23
Forsyth	T-1	53,120	1994	ACRMU			78	81	63	45	42	50	39	21	3
Forsyth	T-2	95,550	1994	ACRMU			73	73	57	45	45	50	43	25	8
Forsyth	T-3	19,600	1994	ACRMU			80	89	72	57	52	50	50	35	19
Forsyth	T-4	12,600	1994	ACRMU			88	87	79	54	53	50	51	37	21
Fort Benton	A-1	98,784	1999	ACAM				79	79	68	78	50	76	64	57
Fort Benton	R-1	322,500	1999	ACRML				84	85	77	73	60	72	68	64
Fort Benton	T-1	45,640	1999	ACRML				81	86	81	88	60	85	73	69
Fort Benton	T-2	31,745	1999	ACRML				77	80	78	85	60	83	72	68
Fort Benton	T-3	181,300	1959	ACRML				46	26	21	46	60	43	23	7
Fort Benton	T-4	25,398	2009	ACRML							98	60	95	78	71
Gardiner	R-1	165,015	1996	ACPL						42	45	50	43	20	0
Gardiner	T-1	3,823	1996	ACPL						41	50	50	48	32	7
Glasgow	A-3	47,400	2002	ACAM	XX	XX		81	68	55	50	50	48	37	24
Glasgow	A-4	5,250	1986	PCAA	59	58		47	43	20	47	45	46	31	18
Glasgow	A-6	12,800	2000	PCAA				64	57	53	69	45	68	61	57
Glasgow	A-7	68,675	2002	ACAM				83	79	71	69	50	67	58	50
Glasgow	R-13	101,250	2003	ACRMU	XX	XX		100	93	86	84	50	82	71	65
Glasgow	R-14	298,125	2003	ACRMU				100	92	86	80	50	78	69	62
Glasgow	R-15	500,100	2012	ACRH							100	50	96	79	72
Glasgow	T-1	58,500	1986	ACRH	69	77		78	71	68	47	50	46	31	14
Glasgow	T-3	70,900	1996	ACRH				71	58	59	65	50	64	60	57
Glasgow	T-4	29,000	1980	ACRMU				47	23	14	12	50	9	0	0
Glasgow	T-5	74,250	1996	ACRH	XX	77		87	85	68	53	50	52	47	38
Glasgow	T-7	36,750	1993	ACRMU				57	41	53	59	50	58	46	33
Glasgow	T-8	20,000	2012	ACRH		XX		XX	XX	XX	100	50	96	79	72
Glasgow	T-9	12,400	1993	ACRMU				56	45	42	41	50	39	19	2
Glasgow	T-10	11,200	2000	ACRH				88	79	79	68	50	67	62	59
Glasgow	T-11	16,000	2003	ACRMU				100	92	89	90	50	88	75	68
Glendive	A-1	145,700	2003	ACAH	XX	XX	XX	XX	83	69	62	55	61	60	60
Glendive	A-2	50,000	2002	ACAM	XX	XX	XX	93	81	60	57	50	56	46	36
Glendive	R-1	465,000	2007	ACRH	77	59	59	64		81	74	50	73	66	62
Glendive	R-2	105,400	2007	ACRH	79	57	59	73		80	77	50	75	68	64
Glendive	R-3	174,000	2003	ACRMU	XX	XX	XX	XX	88	74	71	50	70	62	54
Glendive	T-1	31,000	2007	ACRH	72	51	49	60	60	69	63	50	62	58	55
Glendive	T-2	38,000	2002	ACRMU	XX	XX	XX	94	82	68	58	50	56	44	31
Glendive	T-5	59,220	2007	ACRMU						94	94	50	91	77	70
Glendive	T-6	20,545	2007	ACRMU						91	85	50	83	72	65
Glendive	T-7	85,400	2012	ACRMU							100	50	97	81	72

		Section	Constr.	Family			Sur	veyed I	PCIs			Critical	Pred	icted P	PCIs
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
Hamilton	A-1	57,000	1980	STPA	46	64	53		30	30	38	55	36	20	7
Hamilton	A-2	145,800	1983	STPA	69	76	71		44	34	39	55	37	21	8
Hamilton	R-1A	165,000	1992	ACRMU	99	95	95		87	67	62	50	61	51	40
Hamilton	R-2	150,000	1992	ACRMU	98	99	93		90	74	62	50	56	44	30
Hamilton	T-2	56,550	1994	ACRMU	93	88	64		52	22	34	50	32	11	0
Hamilton	T-3	82,050	1983	STPA	60	57	55		30	26	19	55	16	0	0
Hamilton	T-5	53,912	2002	ACRMU					89	90	80	50	79	69	63
Harlem	A-11	65,320	2003	ACAM					92	84	81	50	79	66	59
Harlem	R-11	288,750	2003	ACRML					90	84	77	60	75	69	66
Harlem	R-12	18,750	2003	ACRML					88	84	77	60	75	69	66
Harlem	T-11	28,174	2003	ACRML					87	77	74	60	73	68	65
Harlowton	A-11	50,600	1997	ACAM	ХХ		91	81	83	53	65	50	63	54	46
Harlowton	B-11	273,600	1997	ACRMI	XX		76	71	77	59	64	60	63	55	44
Harlowton	T-11	17.045	1997	ACRMI	XX		88	88	94	74	61	60	60	49	37
Havre	A-3	25,000	1987	ACAM	701		53	34	42	25	58	50	57	47	37
Havre	A-4	25,000	1987	ACAM	64		46	36	35	28	41	50	39	23	10
Havre	A-5	109.350	1994	ACAH	01		76	64	54	43	67	55	66	61	60
Havre	R-5	530,000	1993	ACRMU	100		84	82	76	68	71	50	70	62	54
Havro	R-11	21 400	1997	ACRMU	96		77	66	60	19	59	50	58	46	33
Havro	R-12	171 600	1004		XX		XX	XX	XX		98	50	95	80	71
Havro	T_2	28,000	1004		07		58	54	58	28	51	50	10	34	17
Havro	T 2	17 500	1004		07		70	70	62	57	62	50	43 61	51	20
Havro	T-3	21 500	1002		97		70	70	76	57	64	50	62	52	42
Havre	1-4 T 5	107 750	1002		100		79	67	65	50	60	50	67	53	43
Havre	1-5 T.c	11 /01	2010		100		74	07	05	52	00	50	07	00	70
lordon	1-0	F0 000	2010						00	00	99	50	90	0U 71	62
Jordan	A-II	50,000	2003		70	<u> </u>	67		90	00	00	50	80 70	71	63
Jordan	n-1 T 4	322,500	2003		/0	69	07		91	00	00	00	/0	70	70
Jordan	I-I T 10	24,538	2003		40	50	41		94	90	94	60	91	76	70
Jordan	1-12	14,425	2003	ACRIVIL				00	90	84	8/	60	84	73	69
Laurei	A-3	171,360	2001					93	84	69 70	81	50	79	66	59
Laurei	R-4	390,000	2000	ACRMU	70			93	81	70	79	50	11	68	62
Laurei	I-1 T 0	85,680	1988	ACRMU	/8			66	44	51	64	50	63	53	43
Laurei	1-2	51,566	1988	ACRMU	86			66	47	38	49	50	47	31	14
Laurel	1-8 T o	98,550	2000	ACRMU				91	81	/5	87	50	85	/3	66
Laurel	1-9	67,060	2001	ACRMU				95	86	80	91	50	88	/6	68
Lewistown	A-1	100,800	1993	PCAA	98	90	//	/8	/5	50	51	45	51	47	37
Lewistown	A-2	30,744	1993	ACPL	97	83	79	83	65	58	49	50	47	29	4
Lewistown	A-3A	15,000	1983	ACPL	76	43	39	34	43	30	15	50	9	0	0
Lewistown	R-23	246,000	1996	ACRMU		95	89	11	72	67	62	50	61	50	39
Lewistown	R-32	327,000	2010	ACRH	XX	XX	XX	XX	XX	XX	100	50	96	79	72
Lewistown	R-33	205,000	2010	ACRH	XX	XX	XX	XX	XX	XX	100	50	96	79	72
Lewistown	R-34	78,000	2010	ACRH			XX	XX	XX	XX	100	50	96	79	72
Lewistown	T-1	299,000	1993	ACRH	100	94	91	87	75	72	65	50	64	60	57
Lewistown	T-4	21,250	1989	ACRMU	XX	XX	XX	XX	XX	XX	95	50	92	78	70
Lewistown	T-5	88,200	1989	ACRH	99	93	82	81	72	74	63	50	62	58	55
Lewistown	T-7	183,706	1999	ACRMU			96	94	81	76	70	50	69	61	53
Lewistown	T-8	68,272	1999	ACRMU			92	92	66	57	62	50	61	50	39
Lewistown	T-9	70,000	1980	ACRMU				72	50	22	27	50	24	2	0
Lewistown	T-10	15,540	2005	ACRMU					96	82	71	50	70	62	54
Lewistown	T-11	36,781	2006	ACRMU						82	56	50	54	41	27

		Section	Constr.	Family			Sur	veyed I	PCIs			Critical	Pred	icted P	'CIs
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	РСІ	2013	2018	2023
Libby	A-1	18,600	2002	ACAM	XX	XX		93	79	70	82	50	80	67	59
Libby	A-2	110,700	2002	ACAM	XX	XX		91	80	75	87	50	84	70	62
Libby	A-3	107,040	2002	ACAH	XX	XX		90	87	71	79	55	76	66	62
Libby	A-4	1,050	2004	PCAA						36	34	45	31	15	2
Libby	A-5	2,700	2004	PCAA						77	79	45	77	67	62
Libby	A-6	4,740	2011	PCAA							54	45	54	52	51
Libby	R-1	285,000	1999	ACRML	XX	XX		82	67	57	95	60	92	77	71
Libby	R-2	90,000	1999	ACRML	XX	XX		82	68	57	89	60	86	74	69
Libby	T-2	82,600	1987	ACRH	94	100		74	62	56	62	50	61	57	55
Libby	T-5	68,501	1999	ACRML				91	80	78	87	60	84	73	69
Libby	T-6	17,400	1999	ACRML				93	91	85	77	60	75	69	66
Lincoln	A-11	54,954	2005	ACAM						80	81	50	79	67	59
Lincoln	A-2	18,040	2005	ACAM						80	83	50	81	68	60
Lincoln	R-11	318,000	2005	ACRML						85	79	60	77	70	67
Lincoln	T-11	62,575	2005	ACRML						84	75	60	74	68	65
Livingston	A-11	183,600	2011	ACAH	XX	XX	XX	XX	XX	XX		55	91	73	66
Livingston	R-11	427,575	2011	ACRH	XX	XX	XX	XX	XX	XX		50	92	77	70
Livingston	T-11	16,205	2011	ACRH	XX	XX	XX	XX	XX	XX		50	92	77	70
Livingston	T-5	89,775	2005	ACRH					85	85	83	50	81	71	66
Malta	A-1	95,800	2010	ACAM				XX	XX	ХΧ	93	50	90	74	65
Malta	A-3	13,824	2010	PCAA					XX	ΧХ	92	45	89	74	66
Malta	A-4	4,500	2010	ACAM						ΧХ	91	50	88	73	64
Malta	R-1	337,500	2010	ACRML				XX	XX	ΧХ	92	60	89	75	70
Malta	T-1	37,100	2010	ACRML				XX	XX	ΧХ	92	60	89	75	70
Malta	T-2	28,200	1997	ACRML				73	69	66	62	60	60	41	25
Miles City	A-2	38,750	2001	ACAM	48	55	48		77	55	75	50	73	62	55
Miles City	A-3	60,000	1985	ACAM	49	56	53		49	26	15	50	12	0	0
Miles City	A-3A	63,950	2001	ACAM	66	50	40		83	71	81	50	79	67	59
Miles City	A-4	53,500	2001	ACAM	48	45	44		76	61	76	50	74	63	56
Miles City	A-5	2,500	1989	PCAA	56	41	40		19	8	2	45	0	0	0
Miles City	R-12	560,100	2008	ACRH	XX	XX	XX		XX	98	84	50	82	72	67
Miles City	R-21	426,000	1998	ACRMU			93		76	67	73	50	72	64	57
Miles City	T-1B	38,000	1985	ACRMU	62	63	41		31	26	45	50	43	25	8
Miles City	T-2A	63,000	1998	ACRMU	XX	XX	84		72	73	75	50	74	65	56
Miles City	T-3	43,750	2001	ACRH	48	50	47		76	66	76	50	75	67	63
Miles City	T-3B	28,000	1998	ACRH	XX	XX	90		70	66	81	50	79	70	65
Miles City	T-6	50,400	1998	ACRMU			89		80	73	80	50	78	69	62
Miles City	1-7	33,250	1998	ACRMU			87		76	68	71	50	70	62	54
Plains	A-1	141,750	2006	ACAM						86	88	50	85	/1	63
Plains	K-1 T 4	348,750	2006	ACRML						89	84	60	82	72	68
Plains	1-1 T 0	47,775	2006	ACRML						88	88	60	85	73	69
Plains	1-2	27,540	2006	ACRML	~~~	W	~~~	04	70	84	88	60	85	73	69
Plentywood	A-11	/3,348	2001	ACAM	XX	XX	XX	81	/2	66	77	50	/5	64	56
Plentywood	R-11	292,500	2001	ACRMU	XX	XX	XX	89	83	75	76	50	74	66	59
Plentywood	1-11	141,080	2001	ACRMU				88	85	/4	81	50	/9	69	63
Polson	A-11	199,475	1998	ACAM	XX	XX		76	66	56	61	50	60	50	42
Polson	K-11	315,000	1998	ACRMU	XX	XX		74	66	62	53	50	42	24	6
Poison	1-11 T (0	170,450	1999	ACRMU	XX	XX		/5	73	64	47	50	45	28	11
Polson	I-12	32,925	1999	ACRMU	ХХ	ХХ		65	56	59	56	50	54	41	27
Poison	1-14	23,875	2003	ACRMU					92	84	81	50	/9	69	63
Poplar	A-1	68,750	2009								98	50	95	/8	68
Poplar	A-2	900	2009	PCAA							83	50	81	69	63
Poplar	A-3	900	2009	PCAA							82	50	80	68	63
Poplar	K-1	330,000	2009	ACRMU							99	50	96	80	72
Poplar	1-1 T.C	56,700	2009	ACRMU							97	50	94	79	71
Poplar	1-2	7,380	2009	ACRMU							99	50	96	80	72
Poplar	1-3	22,050	2009	ACRMU							95	50	92	78	70

		Section	Constr.	Family			Sur	veyed I	PCIs			Critical	Predi	icted P	CIs
Airport City (Branch Name)	Section	Area (sq. feet)	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
Ronan	A-11	162,800	2000	ACAM				87	85	79	68	50	66	57	49
Ronan	A-12	41,600	2000	ACAM				89	78	74	83	50	81	68	60
Ronan	R-11	360.000	2000	ACRML				86	71	62	56	60	53	32	16
Ronan	T-5	23,500	2008	ACRML						87	82	60	80	71	68
Bonan	T-11	192,675	2000	ACRMI				92	74	70	61	60	59	39	23
Boundun	Δ-1	36 400	2002	ACAM	XX	XX	XX	83	75	66	79	50	77	65	58
Roundup	Δ-2	15 390	2002	ACAM	XX	XX	XX	88	74	65	76	50	74	63	56
Roundup	R_1	382 500	2002		XX XX	XX		96	94 84	76	78	60	76	70	67
Roundup	T 1	36 700	2002					05	04	70	70	60	70	60	66
Roundup	T 2	15 900	2002		~~	~~	~~	95	04	79	04	60	75	76	70
Rochau	1-3	15,600	1002		vv			97	90	60 50	94	50	91	70	70
Scobey	A-11	46,500	1998						88	53	09	50	0/	58	50
Scobey	A-12	9,728	1998	ACAM	XX				84	65	75	50	73	62	55
Scobey	R-11	255,000	1998	ACRML	XX				80	70	78	60	76	70	67
Scobey	R-12	46,500	1998	ACRML	ХХ				82	73	81	60	79	71	68
Scobey	T-11	40,640	1998	ACRML	XX				83	61	67	60	66	58	41
Scobey	T-12	5,750	1998	ACRML	XX				85	66	73	60	72	68	64
Scobey	T-13	12,577	2003	ACRML					92	86	85	60	83	72	68
Shelby	A-21	97,273	2003	ACAM					83	77	85	50	83	70	62
Shelby	A-22	22,193	2003	PCAA					91	83	75	45	74	65	60
Shelby	R-21	375,000	2004	ACRMU					83	80	89	50	87	75	68
Shelby	R-22	222,000	2003	ACRMU					81	78	83	50	81	71	65
Shelby	T-6	115.000	2012	ACRMU	XX	XX	XX		XX	XX	100	50	97	81	72
Shelby	T-17	71.330	2012	ACRMU							100	50	98	81	73
Shelby	T-21	89,250	2003	ACRMU					86	78	88	50	86	74	67
Shelby	T-22	64,400	2004	ACRMU					78	69	77	50	76	67	61
Sidney	A-3A	55.000	2007	ACAM	ХХ	XX	XX		XX	84	86	50	83	70	62
Sidney	A-11	80,156	2004	PCAA					99	92	72	45	71	63	59
Sidney	A-12	21,000	2004	ACAH					97	71	79	55	77	66	62
Sidney	A-13	114 774	2006	ACAH					0.	77	81	55	78	67	62
Sidney	Δ-14	30,000	2006	PCAA						97	67	45	66	60	57
Sidney	A-15	9 375	2000							88	7/	45	72	64	60
Sidnov	R-13	402,000	2000						01	72	01	4J 50	70	70	65
Sidney		402,000	2003						91	73	01	50	19	70	00
Sidney	n-12 T 0	370,500	2003		vv	100	70		95	72	02 66	50	00 CE	/ I C1	60 57
Sidney	1-2	30,000	1997	ACRH	~~	100	70		75	69	00	50	60	01	5/
Slaney	1-4	338,250	1992	ACRH	100	85	80	01	67	53	70	50	49	40	24
Staniord	A-2	50,000	1997				93	81	82	70	70	50	70	04	57
Stanford	R-2	70,000	1997	ACRML	XX		93	86	88	79	75	60	74	68	65
Stanford	R-3	262,500	1997	ACRML	XX		92	81	79	73	75	60	/4	68	65
Stanford	1-2	13,100	1997	ACRML			97	90	87	86	90	60	87	74	70
Stevensville	A-1	70,000	1991	STPA	79	81	79	70	65	70	80	55	78	66	58
Stevensville	A-2	90,425	1994	ACAM	100	97	93	80	70	64	82	50	80	68	60
Stevensville	R-1	228,000	1991	STPA	89	85	83	72	78	67	60	55	59	56	52
Stevensville	T-1	29,225	1991	STPA	85	86	85	75	81	67	65	55	64	57	55
Stevensville	T-3	161,448	1994	ACRMU	100	98	96	87	89	78	93	50	91	77	70
Stevensville	T-4	12,600	2003	ACRMU					97	94	93	50	91	77	70
Superior	A-11	37,284	2004	ACAM	XX	XX	XX		92	74	68	50	66	57	49
Superior	A-12	7,000	2011	ACAM							100	50	92	76	67
Superior	R-11	270,979	2004	ACRML	XX	XX	XX		92	84	91	60	88	75	70
Superior	T-11	72,413	2004	ACRML	XX	XX	XX		89	80	81	60	79	71	68
Terry	A-11	52.234	2001	ACAM	XX	ХХ		94	75	76	76	50	74	63	56
Terry	R-11	322.500	2001	ACRML	ХХ	ХХ		95	83	79	75	60	74	68	65
Terry	T-11	23.463	2001	ACRMI	XX	XX		92	71	73	66	60	65	54	37
		,												φ.	

		Section	Constr.	Family			Sur	veyed F	PCIs			Critical	Predi	icted P	CIs
Airport City	Section	Area	Year	Group	1994	1997	2000	2003	2006	2009	2012	PCI	2013	2018	2023
(Branch Name)		(sq. feet)													
Thompson Falls	A-1	26,790	1995	ACAM			91	82	90	66	68	50	66	57	49
Thompson Falls	A-2	52,490	1995	ACAM			93	88	77	67	67	50	65	56	48
Thompson Falls	R-1	252,000	1995	ACRMU			93	88	83	79	83	50	81	71	64
Thompson Falls	R-2	63.000	1995	ACRMU			88	82	67	64	64	50	63	53	43
Thompson Falls	T-4	66.300	1995	ACRMU			93	91	78	75	68	50	67	59	50
Thompson Falls	T-5	50.090	2000	ACRMU			99	97	90	81	86	50	59	48	35
Thompson Falls	T-6	15,175	2003	ACRMU				97	98	85	75	50	73	65	58
Three Forks	A-1	63.800	2000	ACAM	ХХ	ХХ		91	82	70	81	50	79	66	59
Three Forks	A-2	5,400	1986	PCAA	73	75		56	36	33	49	45	48	37	23
Three Forks	R-1	246.000	2000	ACRMU	XX	XX		89	78	70	64	50	63	53	43
Three Forks	R-2	60.000	2000	ACRMU	XX	XX		93	87	80	77	50	75	67	60
Three Forks	T-1	12,975	2000	ACRMU	XX	XX		83	82	63	67	50	66	57	48
Three Forks	T-2	74,150	2000	ACRMU	XX	XX		93	87	79	88	50	86	74	67
Three Forks	T-3	33,300	2000	ACRMU				90	80	65	63	50	62	52	41
Three Forks	T-4	70,344	2000	ACRMU				97	87	78	67	50	66	57	48
Townsend	A-1	105,000	2002	ACAM	XX	ХХ	XX	94	84	72	76	50	74	63	56
Townsend	R-1	240,000	2002	ACRMI	XX	XX	XX	91	87	81	81	60	79	71	68
Townsend	T-1	34,700	2002	ACRMI	XX	XX	XX	93	87	80	70	60	69	66	58
Townsend	T-2	7,750	2002	ACRMI				92	82	78	91	60	88	75	70
Turner	A-1	33,800	1995	ACAM			94	70	59	64	80	50	78	66	58
Turner	R-1	216.000	1995	ACRML			84	79	75	72	78	60	76	67	61
Turner	T-2	6,360	1995	ACRMI			90	70	64	81	79	60	77	68	62
Turner	T-3	20.000	1995	ACRML			87	74	69	76	83	60	81	71	64
Twin Bridges	A-1	90.000	2000	ACAM	XX	ХХ		85	72	48	38	50	36	20	7
Twin Bridges	R-1	258,000	2000	ACRMI	XX	XX		82	70	48	54	60	51	30	14
Twin Bridges	T-1	67,500	2000	ACRML	XX	XX		87	72	52	60	60	58	37	21
West Yellowstone	A-1	195.680	1980	ACAH	75	66	72	•	61	49	49	55	47	30	11
West Yellowstone	A-2	125,000	1980	ACAM	56	51	61		47	37	55	50	54	43	33
West Yellowstone	A-3	125.000	1980	ACAH	77	73	69		60	49	62	55	71	63	61
West Yellowstone	A-4	75.000	1980	ACAM	86	91	90		79	58	65	50	63	54	46
West Yellowstone	A-5	4.320	1988	PCAA	91	88	86		81	74	71	45	70	62	58
West Yellowstone	R-1	1.012.500	2003	ACRH	86	85	71		92	78	82	50	80	71	66
West Yellowstone	R-2	247.500	2003	ACRH	80	84	71		88	79	85	50	83	72	67
West Yellowstone	T-1	750.000	1980	ACRH	94	84	63		54	41	44	50	42	24	7
West Yellowstone	T-2	7.000	1993	ACRMU	98	100	94		82	79	91	50	88	75	68
White Sulphur Springs	A-11	78,951	2009	ACAM	XX	XX	XX	XX	XX		96	55	93	76	67
White Sulphur Springs	R-11	367,500	2009	ACRMU	ХХ	ХХ	ХХ	ХХ	ХХ		99	55	96	80	72
White Sulphur Springs	R-12	105,000	2009	ACRMU	ХХ	ХХ	ХХ	ХХ	ХХ		96	50	93	79	71
White Sulphur Springs	T-1	23,364	1992	STPA	91	91	69	56	51		51	55	49	34	18
White Sulphur Springs	T-2	38,495	1992	ACRMU	99	100	70	66	62		63	50	62	53	41
White Sulphur Springs	T-11	18,400	2009	ACRMU							100	50	97	81	72
White Sulphur Springs	T-12	26,915	2009	ACRMU							100	50	97	81	72
Wolf Point	A-5	106,363	1994	ACAM			68	69	57		98	50	95	78	68
Wolf Point	R-11	509,100	2010	ACRH			XX	XX	ХХ		99	50	95	79	71
Wolf Point	T-1	9,750	2010	ACRH			ХХ	ХХ	ХХ		89	50	86	74	68
Wolf Point	T-2	11,920	2010	ACRML			ХХ	ХХ	ХХ		97	60	93	78	71
Wolf Point	T-3	21.875	2010	ACRML			ХХ	ХХ	ХХ		93	60	90	76	70
Wolf Point	T-4	28,200	2010	ACRML			ХХ	ХХ	ХХ		93	60	90	77	69
		41.007.000	(og fogt)												

 TOTAL SURFACED AREA:
 41,337,032
 (sq. feet)

 2012 SURVEY AREA:
 38,508,124
 (sq. feet)

= 93%

NOTES:

"XX" in PCI columns indicates previous PCI values have been voided to account for new construction.

No entry in PCI columns indicates no inspection of the pavement section for the given year.

Italics indicates the airport was not inspected for this report, as such the included information is suspect. If construction has taken place it will not be reflected in this report. Families and PCI predictions are assumed from pre-2006 pavements.

FIGURE 3.2 SYSTEM WIDE PAVEMENT CONDITION RATINGS "No Action" Alternative for Pavements Surveyed in 2012

Pavements rated as "Fair" are generally in a state of transition on two fronts: surface defects are beginning to be noticeable in both type and frequency, and the expense of reconstruction is becoming more economical than continued preventative maintenance. While surface distresses indicating deterioration of the pavement/base course system are visible, they are subtle enough to not have major effects on ride quality nor are they generating significant foreign object debris (FOD). Studies continue to indicate that reconstruction of "good" to "fair" quality asphalt surfacing is more economical than waiting until major distresses appear. While it may seem counterintuitive to reconstruct good-looking pavement, reconstruction before the gravel base deteriorates is much less expensive. The area of transitional pavements in the absence of reconstruction is projected to escalate from 9% to 11% to 13% in the years 2012, 2017, and 2022, respectively.

Those pavements rated above "Fair" are high-quality surfaces providing trouble-free use and relatively low maintenance costs. Currently, lower-cost preventative maintenance is the recommended course of action for 89% of the pavement area in the PCI database. Without investments in (re)construction, the area of pavement in this high service/low cost maintenance class drops to 81% in five years and 70% in 10 years.

Pavements assessed as below "Fair" condition provide increasing maintenance headaches, growing probabilities of damaging aircraft, decreasing ride quality, and escalating repair and reconstruction costs. "Below fair" pavements range from showing noticeable defects, all the way to near gravel surfaces. These serviceable, but low quality pavements grow from 2% (by area) of the database pavement area to 8% and 17% of the State-wide system pavements in 2017 and 2022, respectively.

This prediction is based on the assumption that current maintenance practices, aircraft activity, and loadings will continue, and that no new construction or major reconstruction will occur. In other words, they show what would happen if Montana airports discontinued pavement construction / reconstruction programs.

3.4 Maintenance Priorities

As an aid to pavement maintenance project prioritization three summary tables have been constructed using PCI projections from **Table 3.1**. These tables consider project prioritization from a system-wide approach, a community-based vantage, and a "maintain vs. reconstruct" option. These summary tables are meant only as an "early warning indicator" and should not be misconstrued as being an absolute authority. Where a rehabilitation or reconstruction project has been completed since the most recent PCI inspection, projections are shown with a strike out.

Preserving the current investment in Montana's general aviation (GA) airport pavements may include prioritizing maintenance projects as in **Table 3.2**. Fog seals, crack sealing, and thin-lift overlays applied before the pavement crosses its critical PCI are the most economical way of extending pavement life. By prioritizing projects by their square footage, it's possible to allocate State and Federal dollars to best extend the life of the greatest pavement area. Table 3.2 can be used to guide a system-wide approach to economical pavement maintenance.

When inconvenience and/or the future rehabilitation burden on local communities is of prime importance, maintenance can be prioritized by the percent of each airport's pavement forecasted to drop below the critical PCI. **Table 3.3** is a ranking of airport communities that could be investing most economically in pavement maintenance. These communities can get their biggest "bang for the buck" if available maintenance dollars are spent before the critical PCI transition. Table 3.3 can help establish a community-based emphasis to economical pavement maintenance.

Tables 3.2 and 3.3 each provide three different time frames to consider in the project prioritization scenario, the first and second five-year period following inspection, and a ten-year overview. Please note that critical PCI transition tables do not give an indication of the type of maintenance that would be most beneficial, only the timing of the application. Inspection Summary Reports and Maintenance Reports are better indicators of the need for thin lift overlays, fog seals, crack sealing, localized patching, or other remediation.

Airports listed in **Table 3.4** are candidates for reconstruction or repairs. Continued investments in maintaining these pavements produce diminishing returns, and are not the best investment of funds. The airports with greater than 75% of their pavements subcritical should be targeted for complete reconstruction, while those in the 25% range just need a section or two of pavement reconstructed.

TABLE 3.2 PAVEMENT PROJECTED TO GO SUBCRITICAL (By Pavement Area)

2012-2017		2017-2022		2012-2022	
Airport	(sq. ft.)	Airport	(sq. ft.)	Airport	(sq. ft.)
West Yellowstone Airport	1,070,680	Havre Airport	728,250	West Yellowstone Airport	1,145,680
Cut Bank Airport	886,438	Three Forks Airport	329,319	Cut Bank Airport	886,438
Polson Airport	717,850	Dillon Airport	270,175	Lewistown Airport	797,587
Hamilton Airport	656,400	Stevensville Airport	257,225	Havre Airport	786,850
Forsyth Airport	630,510	Thompson Falls Airport	208,580	Polson Airport	717,850
Lewistown Airport	598,341	Ennis Airport	200,478	Ronan Airport	715,475
Ronan Airport	552,675	Lewistown Airport	199,246	Hamilton Airport	656,400
Twin Bridges Airport	415,500	Baker Airport	174,700	Forsyth Airport	630,510
Big Timber	353,400	Glendive Airport	174,000	Twin Bridges Airport	415,500
Sidney Airport	338,250	Ronan Airport	162,800	Big Timber	393,000
Harlowton Airport	290,645	Scobey Airport	96,868	Three Forks Airport	368,019
Glasgow Airport	263,550	Laurel Airport	85,680	Harlowton Airport	341,245
Fort Benton Airport	181,300	Libby Airport	82,600	Sidney Airport	338,250
Gardiner Airport	168,838	Columbus Airport	77,012	Glasgow Airport	332,225
Ennis Airport	117,775	West Yellowstone Airport	75,000	Ennis Airport	318,253
Miles City Airport	100,500	Miles City Airport	72,000	Dillon Airport	270,175
Anaconda Airport	99,450	Glasgow Airport	68,675	Glendive Airport	262,000
Chester Airport	96,824	Circle Airport	61,860	Stevensville Airport	257,225
Chinook Airport	92,627	Eureka Airport	60,000	Thompson Falls Airport	208,580
Glendive Airport	88,000	Harlowton Airport	50,600	Fort Benton Airport	181,300
Deer Lodge Airport	71,214	Anaconda Airport	49,140	Baker Airport	174,700
White Sulphur Springs	61,859	Big Timber	39,600	Miles City Airport	172,500
Havre Airport	58,600	Superior Airport	37,284	Gardiner Airport	168,838
Laurel Airport	51,566	Deer Lodge Airport	31,000	Anaconda Airport	148,590
Big Sandy Airport	46,880	Terry Airport	23,463	Laurel Airport	137,246
Three Forks Airport	38,700	Chester Airport	16,825	Chester Airport	113,649
Malta Airport	28,200	•		Deer Lodge Airport	102,214
Conrad Airport	23,040			Scobey Airport	96,868
Eureka Airport	17,500			Chinook Airport	92,627
Libby Airport	5,790			Libby Airport	88,390
•				Eureka Airport	77,500
				Columbus Airport	77,012
				Circle Airport	61,860
				White Sulphur Springs	61,859
				Big Sandy Airport	46,880
				Superior Airport	37,284
				Malta Airport	28,200
				Terry Airport	23,463
				Conrad Airport	23,040

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

2012-2017

TABLE 3.3PAVEMENT PROJECTED TO GO SUBCRITICAL(By % of Each Airport's Pavement Area)

2017-2022

2012-2022

Airport		_Airport		Airport	
Forsyth Airport	100%	Havre Airport	66%	Forsyth Airport	100%
Twin Bridges Airport	100%	Three Forks Airport	58%	Twin Bridges Airport	100%
Gardiner Airport	100%	Stevensville Airport	43%	Gardiner Airport	100%
Polson Airport	97%	Thompson Falls Airport	40%	Harlowton Airport	100%
Hamilton Airport	92%	Ennis Airport	26%	Polson Airport	97%
Harlowton Airport	85%	Scobey Airport	23%	Hamilton Airport	92%
Ronan Airport	71%	Ronan Airport	21%	Ronan Airport	92%
Cut Bank Airport	66%	Dillon Airport	19%	Havre Airport	71%
Big Timber	55%	Baker Airport	18%	Cut Bank Airport	66%
West Yellowstone Airport	42%	Circle Airport	16%	Three Forks Airport	65%
Lewistown Airport	34%	Columbus Airport	15%	Big Timber	62%
Fort Benton Airport	26%	Harlowton Airport	15%	West Yellowstone Airport	45%
Sidney Airport	20%	Glendive Airport	15%	Lewistown Airport	45%
Glasgow Airport	19%	Lewistown Airport	11%	Stevensville Airport	43%
Chester Airport	18%	Libby Airport	10%	Ennis Airport	41%
Chinook Airport	17%	Eureka Airport	10%	Thompson Falls Airport	40%
Ennis Airport	15%	Laurel Airport	10%	Fort Benton Airport	26%
Big Sandy Airport	15%	Superior Airport	10%	Glasgow Airport	24%
Deer Lodge Airport	12%	Big Timber	6%	Scobey Airport	23%
Anaconda Airport	9%	Terry Airport	6%	Glendive Airport	22%
White Sulphur Springs	9%	Deer Lodge Airport	5%	Chester Airport	21%
Glendive Airport	7%	Glasgow Airport	5%	Sidney Airport	20%
Miles City Airport	7%	Miles City Airport	5%	Dillon Airport	19%
Three Forks Airport	7%	Anaconda Airport	5%	Deer Lodge Airport	18%
Laurel Airport	6%	Chester Airport	3%	Baker Airport	18%
Malta Airport	5%	West Yellowstone Airport	3%	Chinook Airport	17%
Havre Airport	5%			Circle Airport	16%
Conrad Airport	5%			Laurel Airport	16%
Eureka Airport	3%			Columbus Airport	15%
Libby Airport	1%			Big Sandy Airport	15%
				Anaconda Airport	14%
				Eureka Airport	14%
				Miles City Airport	12%
				Libby Airport	11%
				Superior Airport	10%
				White Sulphur Springs	9%
				Terry Airport	6%
				Malta Airport	5%

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

Conrad Airport

5%

	Airport	SubCritical	Failed	Very Poor	Poor	Fair
	City	0-55	0-10	11-25	26-40	41-Critical PCI
Complete Reconstruct when Appropriate	Benchmark Airport Forsyth Airport Gardiner Twin Bridges Airport	100% 100% 100% 84%		15%	85% 14% 22%	86% 100% 62%
Partial Reconstruct when Appropriate	Polson Airport Hamilton Airport West Yellowstone Airport Fort Benton Cut Bank Airport Sidney Airport	70% 49% 42% 26% 25% 20%		12%	37% 18%	70% 42% 26% 7% 20%
Localized Repair / Reconstruct	Chinook Airport Glasgow Airport Ennis Airport Big Sandy Airport Deer Lodge Airport Lewistown Airport Anaconda Airport Miles City Airport Laurel Airport Havre Airport White Sulphur Springs Three Forks Airport Big Timber Libby Airport	17% 17% 15% 15% 10% 13% 8% 7% 6% 5% 4% 1% 1% 1% 1%	2%	2% 1% 4%	4%	17% 15% 15% 13% 10% 8% 8% 3% 6% 5% 4% 1% 1%

TABLE 3.4% OF EACH AIRPORT'S PAVEMENT WITH 2012 SUBCRITICAL PCI

strike out indicates a pavement rehabilitation/replacement project has taken place since the previous PCI inspection.

The break-out of pavement ratings ("fair", "poor", etc.) can be used to determine the need for action. For example, since 100% of Benchmark's pavements have subcritical PCI's, and all are rated "poor" to "very poor", Benchmark Airport should be encouraged to reconstruct as soon as possible to avoid accelerating degradation, continued loss of base course structural strength, and rising reconstruction costs. Forsyth and Twin Bridges are showing 100% and 84% subcritical

pavements respectively. However, both of these airports have a substantial quantity of pavement rated as "fair" and none that is "failed" or "very poor". Both of these airports may remain serviceable with only localized "safety" repairs for quite a number of years, but the monies invested would be better directed toward acquiring an AIP local match for a reconstruction project. Polson and Hamilton Airports show up in the partial reconstruct list, but a quick consideration of their remaining sections show they are near-critical, bumping both of these airports into a recommended complete reconstruction. West Yellowstone, Cut Bank, Sidney, Chinook, Anaconda, Lewistown, and White Sulphur Springs each has an overall high quality pavement with an isolated "historical" section or sections in need of repairs. A significant number of airport operations combined with "poor", or "very poor" pavement conditions should boost an airport to the top of the reconstruction list.

These tables are provided only as an aid in the larger framework of GA airport funding allocation. Used judiciously, they can simplify and improve the airport improvement prioritization process.

3.5 Maintenance Practices

All of the results obtained from this analysis are affected by maintenance practices. In general, improved maintenance raises all points of the curve, produces a "bump up" in quality, and/or extends the "flat" portion of the pavement life cycle, providing a longer usable pavement life before dropping off at the critical condition. **Figure 3.3** revisits the pavement life cycle curve from Figure 2.11 showing the benefits of improved maintenance practices. While occasional maintenance extends pavement life, regular preventative maintenance clearly extends the usable life of pavement well beyond its non-maintained expected usable life. Most pavements around the State are already benefitting from recent increases in federal airport funding and improved maintenance policies. Families have more data scatter than previous years, due in large part to new maintenance policies mixed with the old data. Future analyses may be able to quantify these effects by studying maintenance practices more closely along with the PCI evaluations, and redefining pavement families to account for maintenance practices.

FIGURE 3.3 EXTENDED PAVEMENT LIFE CYCLE

Page 3-17

3.6 Maintenance and Rehabilitation Planning

MicroPAVER for windows consolidates the Maintenance & Rehabilitation (M&R) planning into a single work plan with a number of application, modeling, and reporting options. The scope of policy application is set by a sort routine, just like that used to set families. The sort can be structured to report on all database members, currently maintained pavements, one airport, or even a single section of an airport pavement. Once the scope of the M&R plan has been defined a choice of three modeling routines is available: Minimum Condition Report, Consequence Model Report, and Limit to Budget Report. These three reports take dramatically different approaches to modeling pavement aging and its effect on budgeting for optimum pavement quality. The final option of establishing an M&R routine is to set-up the table(s) specific to each model. These range from target minimum PCI's for future years, simple cost by condition tables, to elaborate webs of costs and consequences of specific remedies to be applied to specific grades of distress.

The first step in establishing a work plan is to determine the scope of application. This scope may be restricted for such reasons as reducing computing time, or exploring optimum repair strategy at a single airport. Within the Selection Criteria option of the work plan, the user may select "All Items" to get past and present pavement sections stored in the database, or choose "Build Selection" to construct a smaller group. To choose currently maintained pavements filter using "Rank = O," i.e. select all pavements that have been classified as "current" (This is the same as previous MicroPAVER versions' "Network Report"). Airports can be addressed individually by setting "Zone" equal to the airport's four-character code and setting "Rank = O." Smaller selections are filtered out using "BranchID" or "SectionID."

The **Minimum Condition Report** is the simplest of the modeling routines. This report allows the user to set a single PCI minimum for each future year, then calculates the cost to repair any pavement that falls below these predetermined minimums. Costs of improvements increase with decreasing PCI and are calculated from a 1997 composite of nation-wide Department of Defense airfield maintenance costs adjusted for inflation of construction costs (see **Figure 3.4**). These PCI-based repair cost estimates are a systematic reflection of increasing repair costs for decreasing pavement quality. The minimum allowable PCI can be set for each year in the future to phase in repairs acceptable to available funding. For example, budget constraints might only allow raising the system-wide minimum PCI to 35 the first year, but this could then be raised to 41, 46, and 50 in successive years. Major M&R budgeting is predicted reasonably well for any number of years with little change in the validity of the results.

The **Consequence Model Report** treats extrapolated distress quantities with specific remedies (see **Table 3.5**) to remediate pavement distresses and increase the overall section PCI. For a preset cost (see **Table 3.6**) the pavement distress associated with the treatment replaces the original more severe distress in PCI calculations (see **Table 3.7**). For example, crack sealing AC pavements costs about one dollar and fifty cents per linear foot and fills medium- and high-severity cracks, reducing them to low-severity cracks. If an airport owner paid for recommended repairs to each pavement distress on their pavement and had their airport inspected immediately after completion of the repairs, the airport's new PCI and the bill for improvements would be approximately that predicted by the Consequence Model Report. The Consequence Model Report uses only localized repair options and makes no attempt to increase quantity or severity

Major

of distresses to account for the natural aging process nor to project distresses that have not already been recorded during an inspection. This report is designed to provide projections of the localized repair costs and consequences only when repairs are applied within a year of the airport inspection.

FIGURE 3.4 **COST BY PCI ASSUMPTIONS**

The Limit to Budget Report optimizes pavement quality using a set budget cap and four targeted maintenance policies: Localized Safety, Localized Preventative, Global, and Major Reconstruction. Localized Safety treatments attempt to keep an airport pavement safe for operation using only local treatments while waiting for funds to replace the entire pavement section. For example, a high severity depression could be patched to eliminate hydroplaning potential, but underlying subgrade problems could still necessitate eventual reconstruction. Local Preventative treatments are applied to above-critical-PCI pavements to prolong the pavement life and reduce the effect of nonstructural and minor structural local defects. Crack sealing is a common Local Preventative repair that will stop moisture penetration into the subgrade and preserve subgrade integrity and extend pavement life. **Global** Preventative measures are applied to above-critical-PCI pavements when defects affect the whole surface.

For example, raveling can be slowed significantly by applying a surface seal, rebinding the aggregate into a high quality surface at a fraction of the cost of a new surface. Major M&R is a total reconstruction of a pavement section applied when that section is below the critical PCI for its family curve, or if alligator cracking, rutting, and the like, indicate structural failure even above the critical PCI. The "Major Under-Critical" case of Major M&R assumes that the critical PCI was chosen such that reconstruction is a more economical option than continued maintenance once a section has passed below its critical PCI. While it is very rare, structural failure of parts of a section (like a culvert crossing of a runway settling) may produce an unusable pavement with a PCI rating above critical. This "Major Above-Critical" special case can only be treated effectively by reestablishing a sound foundation for the surface layer, hence its inclusion in the Major M&R policy.

The Limited to Budget Report is an hybrid report which makes the best use of detailed inspection data for short-range predictions then switches to a more general, empirically verified long-range scheme. The first year predictions are based on a Consequence Model Report plus Global and Major repair options, while successive years use the same costs (see Figure 3.4) as the Minimum Condition Report. First year predictions of costs for local maintenance and conditions are determined from Localized Safety and Localized Preventative Maintenance Policies (Table 3.5) and their associated cost and consequence tables (Tables 3.6 and 3.7). In succeeding years, both Localized Safety and Preventative Maintenance costs are determined from the Cost by PCI table illustrated in Figure 3.4. Global M&R always takes its costs and consequences from user-defined values irrespective of pavement PCI's (see **Table 3.8**). In other words fog seals will have the same cost and useful life regardless of the quality of pavement they're applied to. Major Rehabilitation costs for all projection years are used from the Cost by PCI table in Figure 3.4.

Money is first allocated to sub-critical PCI sections for "stop gap" Localized Safety treatments. If it's determined later that funding is available for major reconstruction of a section, then its stop-gap funds are redistributed. The second fiscal priority is to prolong the life of above-critical-PCI pavements with Local, then Global Preventative treatments. Local and Global Preventative funds are the example \$1 invested near the critical PCI as shown in Figure 2.11 to avoid the necessity of spending \$4 to \$5 later. This investment in pavements before rapid deterioration produces an extended pavement life cycle as shown in Figure 3.2 and optimizes pavement quality per dollar spent. Major Under Critical and Major Above Critical repair treatments are prioritized for replacement by PCI and primary use as shown in **Table 3.9**.

Patching - PCC Full Depth

Patching - PCC Full Depth

Patching - PCC Full Depth

Slab Replacement - PCC

Slab Replacement - PCC Patching - PCC Partial Depth

Patching - PCC Partial Depth Patching - PCC Partial Depth

Patching - PCC Partial Depth

Μ

Н

Н

М

Η

М

Η

Μ

Η

Η

М

М

Н

TABLE 3.5 FIRST YEAR LOCALIZED MAINTENANCE POLICIES

LOCALIZED SAFETY OR "STOP-GAP"			LOCALIZED PREVENTATIVE					
Description	Severity	Treatment	Description	Severity	Treatment			
Alligator Cracking	Н	Patching - AC Deep	Alligator Cracking	Н	Patching - AC Deep			
Block Cracking	Н	Crack Sealing - AC	Alligator Cracking	М	Patching - AC Deep			
Depression	Н	Patching -AC Deep	Block Cracking	Н	Crack Sealing - AC			
Jt. Ref. Cracking	Н	Crack Sealing - AC	Block Cracking	М	Crack Sealing - AC			
L & T Cracking	Н	Crack Sealing - AC	Depression	М	Patching - AC Deep			
Patching	Н	Patching - AC Deep	Depression	Η	Patching - AC Deep			
Weath/Ravel	Н	Patching - AC Shallow	Jt. Ref. Cracking	Н	Crack Sealing - AC			
Rutting	Н	Patching - AC Deep	Jt. Ref. Cracking	Μ	Crack Sealing - AC			
Shoving	Н	Patching - AC Shallow	L & T Cracking	Μ	Crack Sealing - AC			
Slippage Cracking		Patching - AC Shallow	L & T Cracking	Н	Crack Sealing - AC			
Swelling	Н	Patching - AC Deep	Oil Spillage		Patching - AC Shallow			
Blow-Up	Μ	Patching - PCC Full Depth	Patching	Μ	Patching - AC Deep			
Blow-Up	Н	Patching - PCC Full Depth	Patching	Η	Patching - AC Deep			
Corner Break	Н	Patching - PCC Full Depth	Rutting	Η	Patching - AC Deep			
Linear Cracking	Н	Crack Sealing - PCC	Rutting	Μ	Patching - AC Deep			
Durability Cracking	Н	Slab Replacement - PCC	Shoving	Η	Patching - AC Shallow			
Small Patch	Н	Patching - PCC Partial Depth	Shoving	Μ	Patching - AC Shallow			
Large Patch/Utility	Н	Patching - PCC Full Depth	Slippage Cracking		Patching - AC Shallow			
Scaling/Crazing	Н	Slab Replacement - PCC	Swelling	Η	Patching - AC Deep			
Shattered Slab	Н	Slab Replacement - PCC	Swelling	М	Patching - AC Deep			
Joint Spalling	Н	Patching - PCC Partial Depth	Blow-Up	L	Patching - PCC Full Depth			
Corner Spalling	Н	Patching - PCC Partial Depth	Blow-Up	Μ	Slab Replacement - PCC			
			Blow-Up	Н	Slab Replacement - PCC			
			Corner Break	Η	Slab Replacement - PCC			
			Corner Break	Μ	Patching - PCC Full Depth			
			Linear Cracking	Η	Crack Sealing - PCC			
			Linear Cracking	Μ	Crack Sealing - PCC			
			Durability Cracking	Η	Slab Replacement - PCC			
			Durability Cracking	М	Patching - PCC Full Depth			

Small Patch

Small Patch

Large Patch/Utility

Large Patch/Utility

Scaling/Crazing

Scaling/Crazing

Shattered Slab

Shattered Slab

Joint Spalling

Joint Spalling

Corner Spalling

Corner Spalling

Faulting

TABLE 3.6FIRST YEAR LOCALIZED MAINTENANCE COSTS

Repair Description	Cost	,					
Crack Sealing - AC	\$2.50	/ft					
Patching - AC Deep	\$40.00	/sf					
Patching - AC Shallow \$20.00							
Crack Sealing - PCC	\$2.50	/ft					
Joint Seal - Silicon	\$3.50	/ft					
Patching - PCC Full Depth \$70.00							
Patching - PCC Partial Depth	\$85.00	/sf					
Slab Replacement - PCC	\$70.00	/sf					

TABLE 3.7 EXAMPLE FIRST YEAR REPAIR CONSEQUENCES

Crack Sealing - AC			
Distress Description	Severity	New Distress Description	New Severity
Block Cracking	Μ	Block Cracking	L
Block Cracking	Н	Block Cracking	L
Jt. Ref. Cracking	Μ	Jt. Ref. Cracking	L
Jt. Ref. Cracking	Н	Jt. Ref. Cracking	L
L & T Cracking	Μ	L & T Cracking	L
L & T Cracking	Н	L & T Cracking	L

TABLE 3.8 GLOBAL MAINTENANCE COSTS AND CONSEQUENCES

Repair Description	Cost	Application Interval	Years for PCI to Return to Preapplication Value
Overlay - AC Thin (Global)	\$1.75 sf	10	5
Surface Seal - Fog Seal	\$0.25 sf	5	2

TABLE 3.9EFFECTIVE MAJOR M&R PRIORITIES

M&R Policy	PCI Range	Runways	Taxiways	Aprons
Major Above-Critical	100 - 70	2	4	6
	70 - Critical	1	3	5
Major Under-Critical	Critical - 40	1	3	5
	40 - 0	2	4	6

3.7 Other Micro Paver Reports (Available, but not included in this System Plan Update)

MicroPAVER provides several reporting options that are not included in this report since they do not directly address the intent of this project. They are briefly discussed here to provide insight on the potential advantages of implementing the pavement management system.

The Inspection Schedule Report allows the user to plan which pavements need to be inspected based on their current and expected conditions. This allows the user to time inspections for maximum effectiveness in identifying pavements in critical need of maintenance and/or reconstruction.

The Condition History Report allows the user to plot a specific pavement's history of PCI values through all of its existing PCI inspections. This option gives the user an at-a-glance assessment of an individual airport pavement's performance over time. This is available in graphical and tabular form under the heading "Condition Table" as part of the M&R Report, but was not included in this text. A 1-, 5-, and 10-year sampling are included in Table 3.1.

The MS Excel spreadsheets included in this report as Tables 2.4 and 3.1 can also be manipulated to perform many of the tasks possible in the MicroPAVER database. Depending on the computer equipment available and the expertise of the user, this spreadsheet format may be more convenient for some types of analysis.

MicroPAVER provides several other analysis routines to help the user decide among various maintenance and repair alternatives. These analysis and reporting options provide decision making information that may be useful for evaluating system-wide programs or for individual airport planning.

3.8 Continued Micropaver Implementation

In addition to this report, the product for this 2012 Update to the Montana Aviation System Plan includes an up-to-date copy of the pavement database, and a current licensed copy of the MicroPAVER software. This will allow the Montana Aeronautics staff to use the software and database in their planning and budgeting efforts. Inspection reports and airport maps will be provided to Montana Aeronautics in a pdf-format for inclusion on their web site where they will be available to the public. Excerpts of the information contained in the reports are provided directly to airport managers, so they have a current indication of their pavement conditions and needs. In addition, AutoCAD files and Microsoft Word and Excel files of the report will also be provided to assist Montana Aeronautics on future MASP Updates.

The continued success of this pavement management system is dependent on ongoing efforts to keep the database up to date. PCI surveys, conducted on a regular three-year cycle beginning in 1988, have collected pavement condition information for 64 of Montana's airports. Continued implementation of the current family models need not include surveys of each airport each time an update is completed. Instead, the frequency of inspections at each airport should be based on the likelihood of significant change since the last inspection. If previous survey results indicate an approaching PCI plateau, an airport could be skipped for a phase or two, allowing additional airports to be surveyed on available funds. Conversely, survey frequency should increase as

conditions approach the critical PCI. The frequency of inspections at any given airport may also be based on the importance of that airport to the system, or the sponsor's needs for information to assess their maintenance and construction programs.

The PCI survey program depends on consistent inspection information to provide accurate and reliable estimates of condition and predictions of future condition. This is best achieved through strict compliance with the requirements of FAA Advisory Circular 150/5380-6B with the modifications from the Northwest Mountain Region handout "Pavement Condition Survey Program", since MicroPAVER is designed to work with these procedures. Personnel selected to conduct the PCI visual inspections should be well-trained, and experienced in the procedures outlined in these documents, to ensure the needed quality and consistency of data.

The program also benefits from close attention to detail in documenting the inspection and analysis processes. The MicroPAVER database, if properly maintained, preserves much of this data. FAA Forms 5320-1 also provide much of the needed information about pavement design criteria, and the definitions of sections and sample units. It is very important that these forms and the information they contain for Montana airports continue to be updated as changes occur, and that the information is updated in the MicroPAVER database. Coordination with the FAA, airport sponsors, and engineers working on airport improvement projects is essential in maintaining up-to-date records of the pavement systems in the database. Additional information, such as the spreadsheet summaries provided in this report should be carefully updated or noted as obsolete when database updates occur. Additionally, the MicroPAVER database may be compatible with other airport information management systems, providing a powerful combination of information in convenient formats. Because of the architecture of the database, it can be coordinated with other programs. Such efforts may require direct coordination with the developers of the program at the United States Army Corps of Engineers Research Labs.

Predictions developed for this update use a slowly evolving set of families. As noted earlier in this chapter, family analysis curves can be re-defined in any way the user desires. Results obtained in this update suggest that maintenance practices actually occurring on Montana's airports may play an increasingly important role in slowing pavement aging. As a result, future updates to the plan may be improved by increased attention to actual maintenance on each pavement section, and revised family analysis curves that account for differences in maintenance. Changes to the family analysis curves should not be undertaken without careful analysis however, since consistency of results is of great importance to the success of the program. Three rounds of inspections under a new maintenance regimen and increased federal investment in Montana's airport infrastructure does not yet provide enough data to split families into "well-maintained" and "poorly-maintained" groups. Most of the current families do not have enough survey points to divide without compromising the statistical validity of the data, especially on the aged end of the graph. In fact, should excellent maintenance continue, the database will not add any "below critical PCI" information; and while this will be good news to airport users, it adds more uncertainty to end-of-cycle PCI predictions.

Even with Montana's current wealth of data (using all inspections from 1988-2012; roughly 3080 PCI determinations from 44,000 recorded distresses) we are probably limited to 5-15 families. It is a very fine line between having enough types of families to fairly accurately model the different pavements in the State, and having too many families to be accurately defined by

the existing data. To be "well-defined" a family must have inspections of representative pavements at a good range of ages. If pavements are less representative of the group, or data is lacking for a cluster of ages (especially the downward curve after critical PCI) a family can only be constructed with a good deal of engineering judgment, and as such, it may represent that judgment, more than the empirical reality. The challenge becomes choosing which few of the numerous common-sense delimiters create families with good statistical properties.

As this pavement management system evolves, it may be appropriate to slowly phase in one or more new criteria (maintenance practices, freeze-thaw cycling, insolation, etc.) in place of, or in addition to the current four criteria (pavement type, functional use, design strength, operations counts) while trying to maintain approximately 10 families. For example, operations counts were phased into the most data-rich family in 2003 as a way to split an overly large set (ACRM became ACRML and ACRMU). Functional usage was dropped from the light-duty design load pavements in 2006 creating two families where formerly there were four. There were not nearly enough "under 12,500 lb design load" or "surface treatments" remaining in the State to warrant four families, so ACAL and ACRL were combined into ACPL, while STAA and STRA were lumped into STPA. There are no families with an excess of data, ripe for dividing into meaningful subsets. The families STPA and ACPL represent very few active pavements, but enough to keep around for a few more iterations. In short, the set of families from 2006 are currently functioning very well with no indications of a need for change at this time.

Appendix **Figure A.1** is included to illustrate that the current set of families is fairly robust, although it also hints at how the high-age end of the graphs (with the least data) can show significant variation from year to year. Note how slight raising of the 0-5 year portions of each graph reflect a number of reconstructed airports and improving early preventative maintenance.

Finally, the Montana airport pavement database and associated software systems can only provide benefits if they are actively used to help manage Montana's airport pavements. The entire purpose of the program is to provide information to decision makers. Whether it is used by the Montana Aeronautics Division, the Federal Aviation Administration, airport sponsors, planners, or engineers, the system can be used to provide meaningful information about pavement conditions, performance, policies, and budget allocations.

CHAPTER 4 AIRPORT REPORT SUMMARIES

4.1 Introduction

This chapter contains the airport inspection report summaries, maintenance reports, inspection photos, and updated FAA forms 5320-1 (Airport Layout Maps with Pavement Strength Survey / Pavement Condition Survey) for each airport surveyed in the 2012 Update to the Montana Aviation System Plan.

Airports are arranged alphabetically by the name of the city in which they are located and maps are folded so that the city name sticks out to provide a convenient locating tab. The city name also appears in large, bold print at the top left corner of each inspection report and maintenance report page. Inspection and summary data is grouped by section and samples which are called out on the included map. The first character of a section name is coded to its primary use, so A-3 will be an apron, R-1 a runway, and T-5A a taxiway. These section designations are in large, bold print at the top right corner of each inspection report page.

4.2 Inspection Report Summaries

The Airport Inspection Report Summaries are presented for each airport using MicroPAVER's "Inspection Report" to compile the 2012 PCI survey project data and perform calculations, then refined and reformatted using Microsoft Excel. A variety of descriptive information about the section is listed immediately below the header on the left three quarters of the page, while the database classification codes for the section are on the right margin. The Inspections section presents first and foremost the section PCI in a medium-sized, bold print, followed by the sampling rate and date of inspection. The specific, recorded distresses for a number of samples completes the documentation of the field surveys. The Extrapolated Distress Quantities section approximates the distresses present in the entire section from those measured in the sampled areas, and shows values for intermediate steps in the PCI calculation routine. The Distresses are listed in order of decreasing "deducts," so the distresses listed first are those causing most damage to the pavement. Maintenance concerns should be prioritized to address these distresses in the order they appear. The classification by distress mechanism may point to the most significant force in pavement deterioration. Finally, no entry in a given section of an inspection report simply means there were no measurable distresses in the sample inspected or that the section was reconstructed within the last year (2011 and 2012) and was not inspected.

4.3 Maintenance Report Summaries

The Maintenance Report Summaries are presented for each airport using MicroPAVER's Budget Constrained M&R Report with a Constrained Budget (Medium By Year) to project the 2012 survey data into a local repair recommendation and a fifteen year budgeting projection. The results are refined and reformatted using MS Excel. The First Year Local Report lists a number of distresses that could be repaired locally to promote safety and pavement life and suggests types of repairs and probable costs. Fifteen Year Projections estimate an annual budget necessary to keep all airport pavements above their critical PCI's, as well as detailing a time line of suggested repairs. The section designation requiring work and an abbreviated treatment suggestion are located along the left edge of the page, with total cost and resulting change in PCI along the right page edge. The detailed breakdown of cost by treatment is listed in the center. A section is not called out in parts of the maintenance report if it is in satisfactory condition and needs no repairs.

4.4 Inspection Photos

One or more pages of inspection photos are provided for each airport to illustrate specific pavement distresses identified in the 2012 survey, or to show the overall appearance of pavement sections. We have increased the number and size of the photos, typically providing both an overview and close-up detail of each pavement section. This "virtual tour" of Montana's airports will provide the report reader with a clearer understanding of the conditions that contributed to our evaluations.

While inspections are completed for typical representative sample areas, photos often strive to document the worst pavement distresses of a section - they often show the exception, not the rule. These photos document the extremes of our evaluation and instruct airport managers and others charged with maintaining Montana's pavements what to look for on an airport pavement. Copies of these photos will be provided for inclusion on Montana Aeronautics Division's web site.

4.5 FAA Form 5320-1

The FAA form 5320-1 for each airport is a standard form that describes the components of each pavement section, and identifies pavement improvement dates. The form has been adapted to also show sample units defined for each pavement section. This allows the field-inspected sample units to be precisely located on the airport, and allows consistent sampling from PCI project to project.

4.6 Reports

The information presented in this chapter for individual airports is also provided directly to each airport's manager, for their use in planning improvements to their airport pavements.

Some pavement sections were not included in the current survey, either because they were brand new and assumed to be in "perfect" condition, or because they are abandoned, not maintained, not part of the federally financed system, T-hangar taxiways, or too small to significantly affect the program. A few sections were left out of the 2012 scope of work since they have deteriorated well below the critical PCI, so no significant information could be gained from their inspection. These omitted pavement sections are listed in **Table A.2** in the appendix along with reasons for omission.

Individual airport reports for 2012 surveyed airports follow:

TABLE A.1PAVEMENT DISTRESSES

ASPHALT PAVEMENTS

Distress Name	Description
Alligator Cracking	Load related - a major distress
Bleeding	Excess asphalt cement on surface reduces traction - design or construction defect
Block Cracking	Rectangular, interconnected cracks - related to climate, age, durability
Corrugation	Closely spaced ridges & valleys, perpendicular to traffic, caused by braking action & unstable pavement base.
Depression	Low spots by settlement or load, cause roughness and future deterioration
Jet Blast	Asphalt has been burned by jet engines
Joint Reflection	Caused by movement of Portland cement under an asphalt overlay - will cause future problems
Longitudinal & Transverse Cracking (L & T Crack)	Random cracks, usually not load related, but due to poor construction joints or climate/age/durability
Oil Spillage	Usually on aprons - softens asphalt and speeds aging process
Patching	A defect no matter how well-done
Polished Aggregate	Aggregate is worn smooth - poor traction
Ravelling	Dislodging of course aggregate particles from the pavement surface
Rutting	Surface depression in wheel path - almost always from snowplows and sand trucks
Shoving from PCC	Asphalt is crushed from adjacent PCC movement
Slippage Cracking	Minor cracks - caused by braking or turning wheels
Swell	Upward bulge - usually from frost heave or expansive clays below pavement
Weathering	Wearing away of asphalt binder and fine aggregate matrix from the pavement surface

TABLE A.1 (continued)PAVEMENT DISTRESSES

PORTLAND CEMENT PAVEMENTS

Distress Name	Description
Blow-Up	Slabs expand in hot weather and crush each other
Corner Break	Poor support at corner of slab, combined with loading
Longitudinal / Transverse / Diagonal Cracks	Cracks extend clear across a slab dividing it into two or three pieces
"D" Crack	Durability Cracks - climate related
Joint Seal Damage	Poor or missing crack sealant - lets water and incompressible materials between slabs - can cause blow-up, pumping, spalling
Patching < 5 ft ²	A defect no matter how well-done
Patching / Utility Cuts	A defect no matter how well-done
Popouts	Small piece of pavement dislodged from surface - freeze / thaw or poor aggregate
Pumping	Subgrade materials are liquefied and then "pumped" up through cracks when loaded
Scaling/Map Cracking/Crazing	Hairline cracks in surface - usually caused by over-finishing the surface, or by climate factors
Settlement Fault	Slabs move up/down at joint with respect to each other
Shattered Slab	Cracked into four or more pieces
Shrinkage Crack	Short, fine surface cracks, usually a construction defect
Spalling - Joints	Edges broken along slab joints, usually near surface only - due to incompressible materials in joints
Spalling - corners	Breaks in slab at joint corners, usually near surface only - due to incompressible materials in joints
ASR	Cracking caused by a chemical reaction between alkalis and certain reactive silica minerals

AIRPORT	OMITTED SECTION	REASON FOR OMISSION
Anaconda	A-3, T-3	Private Apron & Taxiway
Baker	Taxiways Adjacent to Hangars A-8 R-1, R-2	Private Taxiway Area < 10,000 sf Scope Agreement
Benchmark	All Sections	Deterioration to Severe
Big Sandy	North Apron & Taxilane	Private Apron
Chester	Old Runway Turnaround A-4	Not Maintained
Choteau	SW Apron & Fueling Taxilane A-2	Private Apron & Taxilane Not Maintained
Circle	T-4	Private Taxiways
Colstrip	Hangar Taxilane	Area < 10,000 sf
Conrad	A-2, T-3 Turnaround	Private / Not Maintained Area < 10,000 sf
Cut Bank	Adjacent to Hangars R-1	Private Taxiways Scope Agreement
Deer Lodge	T-1C	Not Maintained
Dillon	R-4A, Apron Remnants	Area < 10,000 sf
Ekalaka	Hangar Taxilane	Private Taxilane
Forsyth	Hangar Taxilanes A-2	Private Taxilanes Not Maintained
Glasgow	North Apron R-15	Improved Gravel- Not Pavement Scope Agreement
Glendive	T-4 T-7	Hangar Taxiways Constructed in 2012
Hamilton	T-1, T-6 T-4	Area < 10,000 sf Private Hangar Taxiways
Harlem	T-3 A-1	Area < 10,000 sf Not Maintained
Havre	Various	Private Aprons & Hangar Taxiways
Jordan	Apron Section	Not Maintained
Laurel	T-5, T-6, T-7, T-10 R-2, R-3	Private Hangar Taxiways Scope Agreement

TABLE A.2SECTIONS OMITTED FROM 2012 PCI SURVEY

TABLE A.2 (continued)SECTIONS OMITTED FROM 2009 PCI SURVEY

Lewistown	R-1A, R-31, T-6 R-1 Chemical Washpad & Taxilane	Not Maintained Private Apron & Taxilane
Libby	T-3	Hangar Taxiways
Livingston	R-11, T-11, A-11	Scope Agreement
Malta	A-2 R-1	Area < 10,000 sf Scope Agreement
Miles City	A-1, Various R-11A, R-21A, T-5A	Private Hangar Taxiways Not Maintained
Plentywood	A-2 T-3	Private Hangar Apron Private Hangar Taxiway
Polson	A-3 T-13	Area < 10,000 sf Private Hangar Taxilane
Ronan	T-2, T-3, T-4	Private Hangar Taxilanes
Roundup	T-2	Private Hangar Taxilane
Shelby	Turnarounds	Area < 10,000 sf
Sidney	Various A-1A, A-5A, T-5	Private Hangar Taxilanes Area < 10,000 sf
Stanford	Chemical Washpad Runway Transition	Private Apron Area < 10,000 sf
Stevensville	Apron Adjacent to Hangars	Private Apron
Superior	Taxilane Adjacent to Hangars	Private Taxilane
Terry	Turnaround Hangar Taxilane	Area < 10,000 sf Private Taxilane
Thompson Falls	T-3 North Side Hangar Access	Area < 10,000 sf Private Taxilane
Three Forks	Various	Private Taxilanes/Access
Turner	T-1	Private Taxilane
Twin Bridges	Turnarounds A-2, Various	Area < 10,000 sf Private Apron Areas
West Yellowstone	USFS Facilities	Private Apron & Taxiway

TABLE A.3FIRST YEAR REPAIR CONSEQUENCES

Crack Sealing - AC Consequences

Distress/Description	Severity	New Distress/Description	Severity
Block Cracking	Н	Block Cracking	L
Block Cracking	Μ	Block Cracking	L
Jt. Ref. Cracking	Н	Jt. Ref. Cracking	L
Jt. Ref. Cracking	Μ	Jt. Ref. Cracking	L
L & T Cracking	Н	L & T Cracking	L
L & T Cracking	Μ	L & T Cracking	L

Patching - AC Deep Consequences

Distress/Description	Severity	New Distress/Description	Severity
Alligator Cracking	Н	Patching	L
Alligator Cracking	Μ	Patching	L
Depression	Н	Patching	L
Depression	Μ	Patching	L
Patching	Н	Patching	L
Patching	Μ	Patching	L
Rutting	Н	Patching	L
Rutting	Μ	Patching	L
Swelling	Н	Patching	L
Swelling	М	Patching	L

Patching - AC Shallow Consequences

Distress	Severity	New Distress	Severity
Oil Spillage	Х	Patching	L
Weathering/Raveling	Н	Patching	L
Shoving	Н	Patching	L
Shoving	Μ	Patching	L
Slippage Cracking	Х	Patching	L
TABLE A.3 (continued)FIRST YEAR REPAIR CONSEQUENCES

Crack Sealing - PCC Consequences

Distress	Severity	New Distress	Severity
Linear Cracking	Н	Linear Cracking	L
Linear Cracking	М	Linear Cracking	L

Slab Replacement - PCC Consequences

Distress	Severity	New Distress	Severity
Blow-Up	Н		
Blow-Up	Μ		
Corner Break	Н		
Durability Cracking	Н		
Large Patch/Utility	Н		
Scaling/Crazing	Н		
Scaling/Crazing	М		
Faulting	Н		
Shattered Slab	Н		
Shattered Slab	М		

Patching - PCC Full Depth Consequences

Distress	Severity	New Distress	Severity
Blow-Up	Н	Large Patch/Utility	L
Blow-Up	L	Large Patch/Utility	L
Blow-Up	Μ	Large Patch/Utility	L
Corner Break	Н	Large Patch/Utility	L
Corner Break	Μ	Large Patch/Utility	L
Durability Cracking	Μ	Large Patch/Utility	L
Small Patch	Н	Small Patch	L
Small Patch	Μ	Small Patch	L
Large Patch/Utility	Н	Large Patch/Utility	L
Large Patch/Utility	Μ	Large Patch/Utility	L

Patching - PCC Partial Depth Consequences

Distress	Severity	New Distress	Severity
Small Patch	Н	Small Patch	L
Joint Spalling	Н	Large Patch/Utility	L
Joint Spalling	М	Large Patch/Utility	L
Corner Spalling	Н	Large Patch/Utility	L
Corner Spalling	Μ	Small Patch	L

Montana Aviation System Plan FIGURE A.1 FAMILY COMPARISONS

ACAH

FIGURE A.2

ASHPALT PAVEMENT DISTRESSES BY CAUSES

Load	Climate/Durability	Other
Alligator Cracking	Block Cracking	Bleeding
Rutting	Joint Reflection Cracking	Corrugation
	Longitudinal/Transverse Cracking	Depression
	Patching	Jet Blast
	Weathering	Oil Spillage
		Polished Aggregate
		Shoving
		Slippage Cracking
		Swelling
		Raveling

CONCRETE PAVEMENT DISTRESSES BY CAUSES

Load	Climate/Durability	Other
Corner Break	Blow-Up	Small Patch
Linear Cracking	Durability Cracking	Large Patch/Utility
Shattered Slab	Joint Seal Damage	Popouts
		Pumping
		Scaling/Crazing
		Faulting
		Shrinkage Cracking
		Joint Spalling
		Corner Spalling

ASR