Preliminary Geotechnical Investigation and Pavement Assessment

I-90 – Taft West

Mineral County, Montana

Yeh Project No.: 219-371 UPN: 9487000

December 22, 2020

Prepared for:

Montana Department of Transportation PO Box 201001 Helena, MT 59620

Attn: Bret Boundy, P.G.

Prepared by: Yeh and Associates, Inc. 2000 Clay Street, Suite 200 Denver, Colorado 80211

Phone: 303-781-9590

Preliminary Geotechnical Investigation and Pavement Assessment

I-90 – Taft West Mineral County, Montana

Yeh Project No.: 219-371 UPN: 9487000

December 22, 2020

Prepared by:

Leyla J. Safari, EIT Staff Engineer Reviewed by:

Robert F. LaForce, P.E. Senior Project Manager

Robert F. La Force

Reviewed by:

Samantha Sherwood, P.E.

Project Manager

2/22/2020

Table of Contents

1 2		POSE AND SCOPE OF STUDY POSED CONSTRUCTION	
3		CONDITIONS AND GEOLOGIC SETTING	
4	3.1	GEOLOGIC SETTING	
4	4.1	SURFACE INVESTIGATIONFIELD EXPLORATION	
	4.2	Subsurface Conditions	5
	4.3	LABORATORY TESTING	6
	4.4	GROUNDWATER	7
	4.5	EXISTING PAVEMENT THICKNESS	7
5		EMENT EVALUATION	
6	PAV 6.1	PAVEMENT REPAIR OPTIONS	
	6.2	TRAFFIC LOADING	
	6.3	SUBGRADE STRENGTH	
	6.4	PAVEMENT DESIGN	
	5.4	HACP MIX AND BINDER RECOMMENDATIONS	.14
7	ОТН	ER CONSTRUCTION CONSIDERATIONS	14
	7.1	CORROSION POTENTIAL	. 14
8	LIM	TATIONS	15
9	REF	ERENCES	15

List of Figures

FIGURE 1 – GEOLOGIC MAP OF THE MONTANA PART OF THE WALLACE 30' X 60' QUADRANGLE (LONN, 1999)	3
FIGURE 2 — PAVEMENT DISTRESS VISIBLE AT THE SURFACE, MARCH 2020	9
FIGURE 3 — COMPARISON OF PAVEMENT CORES AT YA-EB-4 AND YA-EB-5	11
List of Tables	
Table 4-1 – Pavement Thicknesses Measured from Pavement Cores	8
Table 6-1 – Pavement Repair Options	12
TABLE 6-2 — ESTIMATED COSTS FOR PAVEMENT MATERIALS AND TREATMENTS	12
TABLE 6-3 - DESIGN TRAFFIC LOADING	13

List of Appendices

APPENDIX A - BORING LOCATION PLAN

APPENDIX B - BORING LOGS

APPENDIX C - LABORATORY TEST RESULTS

APPENDIX D – PAVEMENT CORE PHOTOS

APPENDIX E – TRAFFIC DATA

APPENDIX F – LTPPBIND OUTPUT

1 PURPOSE AND SCOPE OF STUDY

This report presents the results of our Preliminary Geotechnical Investigation and Pavement Assessment for Interstate 90 (I-90) from reference post (RP) 0 to 5.7, or Lookout Pass to the Taft Area in Mineral County, Montana. This work is part of the Montana Department of Transportation (MDT) Project UPN 9487000, Taft-West. The study was performed in general accordance with Yeh and Associates' (Yeh) Scope of Work dated June 25, 2020. Our work consisted of field exploration, laboratory testing, engineering analyses, and preparation of this report.

This report includes our preliminary recommendations for the geotechnical aspects of pavement design and construction for the project. The conclusions and recommendations stated in this report are based on the conditions found at the locations of our exploratory borings at the time our investigation was performed. Our findings, conclusions, and recommendations should not be extrapolated to other areas or used for other projects without our prior review. Furthermore, if the project site has been altered, they should not be used without Yeh and Associates' prior review to determine if these recommendations remain valid.

The purpose of this investigation was to evaluate the condition of the existing pavement and the geotechnical characteristics of the subsurface soils for site development and preliminary pavement design. The scope of work included the following tasks:

- A subsurface investigation of I-90 where accessible with a core machine and truckmounted drill rig.
- Laboratory testing of the soils encountered during field exploration to evaluate relevant physical and engineering properties of the soil.
- Preparation of this report.

2 Proposed Construction

The I-90 – Taft West project consists of reconstruction of a 5.7-mile stretch of I-90 in Mineral County, Montana. The project includes the segment of I-90 that extends from Lookout Pass on the Idaho border southeast to the Taft Area (Figure 1). The proposed work will repair I-90 to current MDT design standards and includes drainage, environmental, traffic, and safety improvements. We understand existing pavement is deteriorating and needs to be replaced with a more durable pavement section.

3 SITE CONDITIONS AND GEOLOGIC SETTING

The 5.7-mile stretch of I-90 between RP 0.0 and RP 5.7 is located near the Montana-Idaho border in Mineral County, Montana. This is a principal arterial route located in forested, rugged, mountainous terrain within Lolo National Forest. The project generally parallels a portion of the St. Regis River from RP 1.7 to RP 5.7. The segment is a four-lane road that extends from Lookout Pass (Exit 0) southeast to the Taft exit near RP 5.7. The stretch of road at the west end of the project area is at an elevation of about 4,710 feet at Lookout Pass and slopes down generally to the east to an elevation of about 3,650 feet at the Taft exit. MDT owns and maintains the road and the posted speed limit is 70 miles per hour. The roadway in the project area includes three bridges. There is a ski and recreation area with associated buildings and parking on the west side of Lookout Pass. The Dena Mora Rest Area is located at RP 4.7, approximately one mile from the east end of the project, and includes paved parking and guest facilities on the north and south sides of the road. The Taft exit provides access to the Route of the Hiawatha biking and hiking trail. Other areas adjacent to the interstate are vacant land. There are ten significant rock cut slopes within the project area with two along the westbound lanes and eight along the eastbound lanes. These slopes are discussed in more detail under our Cut Slope Evaluation Report. The existing pavement is deteriorated and MDT has proposed to repair I-90 to be a more durable roadway.

3.1 Geologic Setting

Based on the 1999 Geologic map of the Montana part of the Wallace 30' x 60' quadrangle by Lonn and McFadden, the project area is in a complex geologic setting where two major tectonic features, Montana's western thrust belt and a series of faults known as the Lewis and Clark line, intersect. An east-west trending fault line crosses the project area north of the Dena Mora rest area and at the easternmost road cuts in this study (Figure 1). Evidence is lacking for Quaternary-age, or recent, movement along the faults. However, reported nearby seismic activity is generally attributed to deep mining activity (Stickney, et al, 2000). Because of the minor faulting and folding of the formations, the rock layers are tilted, or dipping in several directions at angles of 20 to 75 degrees. Lonn and McFadden mapped the project area as Precambrian-age sedimentary rock. As shown in Figure 1, representative rock in the project area includes gray to green siltite and argillite, which are fine-grained metasedimentary rock types, and white to purple quartzite of the Revett Formation(Yr) and the lower member of the Wallace Formation (Ywl). These formations can be up to 4,100 feet thick. The St. Regis Formation (Ysr) overlies the Revett Formation and contains layers of gray-purple to green

claystone and purple quartzite. Surficial deposits are mapped in eastern half of the project area as Quaternary age glacial till, which includes clay through boulder-sized material directly deposited by glaciers. Other surficial deposits observed include talus/colluvium of gravel to boulder size angular blocks of bedrock scattered on slopes and benches and in ditches. Artificial fill typical to roadway construction was also observed.

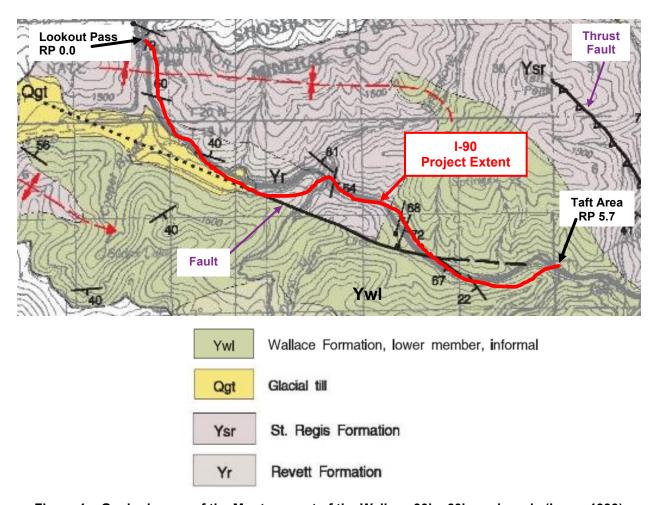


Figure 1 – Geologic map of the Montana part of the Wallace 30' x 60' quadrangle (Lonn, 1999)

4 Subsurface Investigation

4.1 Field Exploration

On Wednesday July 29, 2020, Yeh completed a scoping trip to the site to identify potential boring locations and perform preliminary site reconnaissance. We returned to the site on September 2-4, 2020 to complete pavement coring and exploratory drilling and again on September 9-11, 2020 for field mapping of select cut slopes.

Yeh contracted A-Core Concrete Specialists (A-Core), to core the pavement at twenty-eight (28) locations, which included all eastbound and westbound pavement boring locations. A 6-inch diameter core barrel was used to retrieve asphalt and concrete cores. Yeh's drilling subcontractor, O'Keefe Drilling, drilled twenty-one (21) borings at most of the locations that were cored, using a truck-mounted B-61 HDX drill rig equipped with an automatic (i.e. hydraulic) hammer. The borings were advanced with 8 ¼-inch O.D., continuous-flight, hollow-stem auger on September 2-4, 2020. A representative of Yeh and Associates marked the boring locations in the field prior to drilling to indicate coring/drilling locations and was present during coring and drilling to log the subsurface conditions encountered and collect pavement cores and soil samples. The approximate boring locations were determined using a phone GPS mapping application (Locus Map) and are presented in Appendix A. Boring logs are presented in Appendix B.

We selected 4 locations to drill pairs of borings near each other to compare a relatively poor pavement condition to a relatively good condition. These pairs consisted of (1) YA-EB-4/YA-EB-5, (2) YA-EB-12/YA-EB-13, (3) YA-WB-4/YA-WB-5, and (4) YA-WB-6/YA-WB-7. We were able to retrieve the core from YA-WB-4; however drilling at this location was not possible due to its proximity to the active traffic line during our field investigation, and we could not safely use the drill rig. We cored the pavement at YA-EB-12A for additional information, but it is not included in one of the pairs.

We recorded penetration resistance measurements during drilling by driving standard split-spoon (SPT) and Modified California (MC) and samplers into subsurface materials at approximate 2 to 5-feet intervals. The SPT sampler has an O.D. of 2.0 inches and an I.D. of 1.375 inches. The SPT sampler was driven 18 inches for each sample, per ASTM D3550.The MC sampler is a 2.5-inch outer-diameter (O.D.), 2.0-inch inner-diameter (I.D.) split-barrel sampler that contains 1.95-inch inner-diameter brass liners, similar to ASTM D3550. The MC

sampler was driven 12 inches for each sample. The samplers were advanced by a calibrated, automatic, 140-pound hammer falling 30 inches. The automatic hammer had an energy transfer ratio of 82.7 percent. We also collected bulk samples of auger cuttings from each boring.

The number of blows required to drive the SPT sampler 18 inches or the MC sampler 12 inches, or fractions thereof, constitutes the penetration resistance value (N) as shown on the boring logs. The penetration resistance value is a useful index to evaluate the consistency and relative density or hardness of the subsurface materials encountered.

4.2 Subsurface Conditions

Borings YA-WB-1 through YA-WB-13 were located in the outer lane of westbound I-90 and YA-EB-1 through YA-EB-14 were located in the outer lane of eastbound I-90. Boring YA-LP-1 was drilled near the eastbound on-ramp at Lookout Pass, beyond the existing pavement area. The borings drilled within the pavement were advanced to depths of 3.75 to 10.5 feet and YA-LP-1 was advanced to a depth of 30.5 feet.

Our borings generally encountered 4.5 to 9.5 inches of asphalt and 7.75 to 9.75 inches of concrete. Six (6) borings near bridge approaches and one (1) in the shoulder had only asphalt and no concrete. The fill below the pavement generally consisted of sand and gravel. No pavement was present at YA-LP-1 that was drilled off the shoulder of the roadway. The average asphalt thickness was about 6.0 inches and the average concrete thickness was about 8.6 inches.

Soils encountered in twenty-one (21) borings advanced beneath the pavement generally consisted of 1.2 to 9.8 feet of sand and gravel fill over native sand, gravel, and clay. We do not believe we encountered bedrock in our borings but drilling conditions made it difficult to discern pulverized bedrock material from the native sand and gravel soils.

The fill generally consisted of clean to silty sand and gravel, with some isolated areas of clayey material. The fill had no to low plasticity and was medium dense to very dense based on results of field penetration resistance tests. We encountered an approximate 1.5 ft layer of clay fill that appeared to contain organics and glass in YA-WB-7 at a depth of 8 feet.

We encountered native soils below the fill in six (6) borings. The native soils were variable and consisted of clay, sand, and silt. We encountered lean clay with sand and gravel in four (4) borings below the fill. Most of the clay was very stiff, but soft to stiff, low to medium plasticity

clay was encountered in YA-WB-6. The sand and gravel were clean to clayey, had no to low plasticity, and were medium dense to very dense.

4.3 Laboratory Testing

Representative soil samples were tested to determine the classification and engineering properties of the materials encountered. The testing was conducted in general accordance with recognized test procedures, primarily those of the American Society for Testing and Materials (ASTM) and American Association of State Highway and Transportation Officials (AASHTO). Yeh's lab performed the classification testing, GROUND Engineering Consultants, Inc. (GROUND) performed the Modified Proctor, CBR (1 and 3 point), and Resilient Modulus tests, and Colorado Analytical Laboratories, Inc. conducted the resistivity, chloride, pH, and sulfate testing. The following tests were performed in general accordance with locally recognized standards:

Description and Identification of Soils (Visual-Manual Procedure)
Moisture Determination
Unit Weight
Sieve Analysis
Atterberg limits
Water Soluble Sulfates
Water Soluble Chlorides
Resistivity
pH
Modified Proctor
California Bearing Ratio (CBR)
Resilient Modulus

We performed sieve analysis tests and Atterberg limits on twenty-two (22) bulk samples obtained from the borings. Three (3) samples had an AASHTO soil classification of A-2-4 with a group index of 0, thirteen (13) samples classified as A-1-b with a group index of 0, and six (6) classified as A-1-a with a group index of 0. One (1) sample classified as GC, one (1) as GM, one (1) as GM-GC, twelve (12) as SM, two (2) as SM-SC, one (1) as SW, and four (4) as SW-SM in the USCS system.

GROUND performed three Modified Proctor tests on each of the three AASHTO soil types. The A-2-4 soil had a maximum dry density of 137.2 pcf and optimum moisture content of 6.5 percent. The A-1-b soil had a maximum dry density of 134.7 pcf and optimum moisture content of 6.7 percent. The A-1-a soil had a maximum dry density of 134.9 pcf and optimum moisture content of 6.8 percent

CBR testing (1-point and 3-point) testing was performed in accordance with ASTM D1883 on seven (7) samples. The samples were remolded to 95 percent of maximum dry density and optimum moisture content for the 1-point CBR tests, and remolded to 90, 95, and 100 percent of maximum dry density at optimum moisture content for the 3-point CBR tests. The 1-point CBR test was performed on 3 samples, yielding CBR values that ranged from 34 to 59. The 3-point CBR test was performed on 4 samples, yielding CBR values from 10 to 16 for samples remolded to 90 percent compaction, 22 to 40 for samples remolded to 95 percent compaction, and 32 to 52 for samples remolded to 100% compaction. Subgrade strength testing is discussed further in Section 6.3.

Resilient modulus testing was performed in accordance with AASHTO T-307. Combined samples were remolded to 95 percent of maximum dry density at 2 percent above optimum moisture content based on the modified Proctor tests. One resilient modulus test was performed on a representative sample of A-1-a soil and one on A-1-b soil. The A-1-a soil sample, which consisted of combined bulk samples from YA-EB-8, YA-WB-6, and YA-WB-7, had a resilient modulus of 21,791 pounds per square inch (psi). The A-1-b soil, which consisted of combined bulk samples from YA-EB-10, YA-WB-2, and YA-WB-3, had a resilient modulus of 22,701 psi.

The material descriptions and laboratory test results were used for the geotechnical engineering analyses and the development of preliminary pavement structure recommendations. Details of laboratory test results are presented in Appendix C and on the boring logs in Appendix B.

4.4 Groundwater

We encountered groundwater in one boring, YA-LP-1, during this investigation. We encountered groundwater during drilling at 6.7 feet below the surface after equilibration. We do not anticipate groundwater to affect the planned construction. Variations in groundwater conditions may occur seasonally. The magnitude of the variation will be largely dependent upon the amount of spring snowmelt, duration and intensity of precipitation, site grading changes, and the surface and subsurface drainage characteristics of the surrounding area. Perched water tables may be present but were not encountered in the borings.

4.5 Existing Pavement Thickness

We measured the thickness of the existing pavement from each pavement core. All borings were drilled through pavement except YA-LP-1 which was drilled in the shoulder near Lookout

Pass, beyond the existing pavement. Table 4-1 summarizes the pavement thickness measured from core we retrieved.

Table 4-1 - Pavement Thicknesses Measured from Pavement Cores

Boring	Asphalt Thickness (in)	Concrete Thickness (in)	Boring	Asphalt Thickness (in)	Concrete Thickness (in)
YA-EB-1	5.5	9.75	YA-WB-1	8.125	
YA-EB-2	6.0	8.25	YA-WB-2	5.25	9.0
YA-EB-3	5.5	8.5	YA-WB-3	5.5	8.5
YA-EB-4	8.0		YA-WB-4	5.0	8.75
YA-EB-5	9.5		YA-WB-5	5.5	8.25
YA-EB-6	5.75	8.25	YA-WB-6	4.5	9.25
YA-EB-7	5.75	9.0	YA-WB-7	5.0	
YA-EB-8	5.5	9.0	YA-WB-8	5.0	8.5
YA-EB-9	5.5	8.5	YA-WB-9	5.5	8.5
YA-EB-10	5.25	9.5	YA-WB-10	5.25	8.75
YA-EB-11	5.75	8.0	YA-WB-11	5.0	8.5
YA-EB-12	8.0		YA-WB-12	5.75	7.75
YA-EB-12A	8.5		YA-WB-13	4.75	8.25
YA-EB-13	8.25		YA-LP-1	None, not wit	hin pavement
YA-EB-14	6.25	8.25			
Average Asphalt Thickness = 6.0 in			Averag	e Concrete Thick	ness = 8.6 in

5 PAVEMENT EVALUATION

As shown in Figure 2, this pavement has suffered extensive damage that was visible at the surface, particularly at longitudinal joint locations. We believe the damage is caused by moisture and that either compaction issues at the joints or an asphalt mix susceptible to moisture damage contributed to the extent of damage resulting in a loss of cohesion in the mix. MDT provided us representative photos of the pavement conditions taken in March 2020, prior to the most recent patching and overlay operations. Figure 2 shows representative photos of the pavement distress visible at the surface.

Figure 2 – Pavement distress visible at the surface, March 2020

It was difficult to identify older distressed areas in the field during our July and September visits due to recent patching using milling and overlay of the old pavement. We were able to distinguish the difference in asphalt mixes between the older asphalt and newer asphalt from recent mill and overlay patches by examining the pairs of pavement cores at YA-EB-4/YA-EB-5 and YA-EB-12/YA-EB-13. The other two pairs along the westbound direction did not exhibit evidence of patching/overlaying. Figure 3 shows the cores from one of the pairs, YA-EB-4/YA-EB-5, where YA-EB-4 was intended to be in an area of relatively good pavement condition, and YA-EB-5 in a relatively poor pavement condition.

The newer asphalt overlay is visible in the core from YA-EB-5 where there is a clear difference in asphalt mixes between the newer and older asphalt. For the cored areas, we believe that any distressed asphalt was removed prior to patching. Based on the thickness of new mix in the cores, we believe approximately 3+ inches of HMA were removed and replaced. This situation is also seen in the pair at YA-EB-12 and YA-EB-13, the photos of which are presented in Appendix D.

To investigate any possible damage in the lower layers of the asphalt pavement, we drilled four pairs of borings near each other to capture one in each at a location previously showing relatively poor pavement conditions and one at a location showing relatively good pavement conditions. The pavement cores we retrieved were primarily from the outer (righthand) driving lanes and none of the pairs show signs of significant damage in lower layers. Additionally, none of the cores show visible stripping damage at the interface with the old concrete.

The performance of the recent patches and continued performance of the non-patched areas will provide information to address the need for complete removal of the asphalt layer prior to any reconstruction.

Figure 3 - Comparison of pavement cores at YA-EB-4 and YA-EB-5

6 PAVEMENT DESIGN

6.1 Pavement Repair Options

Based on our evaluation of the existing pavement and results of our subsurface investigation, we propose several options to repair the pavement. Table 6-1 presents potential pavement repair options with relative advantages, disadvantages, and costs. Relative costs are presented in Table 6-2 and are based on local experience in Colorado, which may not accurately represent costs in the project area. The costs are intended to provide estimates of each repair option relative to each other and do not reflect actual costs that may be encountered for this project.

We believe the lowest cost and fastest repair option is to remove and replace the existing asphalt by milling 3 inches of the existing asphalt and replacing it with 3 inches of new asphalt, which would likely have a design life of about 10 years, if no stripping occurs. The advantages and disadvantages presented in Table 6-1 are relative to an asphalt mill and overlay in terms of criteria such as cost, maintenance, and durability, among others.

Table 6-1 – Pavement Repair Options

Repair Option	Advantages	Disadvantages	Relevant Costs From Table 6-2
ASPHALT MILL AND OVERLAY	 - Lowest cost - Fastest to construct - Shortest design life - Lowest amount of traffic control needed - Shortest length of detour/impact to traffic 	- Frequent maintenance - Not as durable as concrete - Less resistance to reflection cracking from underlying concrete joints - May have stripping failures from old lower layers	- (1), (2), (3), (8)
RUBBLIZE EXISTING CONCRETE, OVERLAY WITH ASPHALT OR CONCRETE	- ↓ Maintenance (if concrete) - ↑ Design Life - ↑ Durability (if concrete) - No reflective cracking issues from underlying concrete	- ↑ Cost - ↑ Time to construct - ↑ Traffic control - ↑ Length of detour - Frequent maintenance (if asphalt) - Requires thicker overlay (by ~1-2 inches) than just a mill/overlay - Requires edge drains - Elevation rise of road profile - Removal cost for asphalt	- (1), (2), (3), (4), (5), (8), (9)
UNBONDED CONCRETE OVERLAY ON MILLED ASPHALT	- ↓ Maintenance - ↑ Design life - ↑ Durability (concrete) - No reflection cracking from underlying concrete - Existing asphalt could be used as bond breaking layer (lower cost)	- ↑ Cost - ↑ Time to construct - ↑ Traffic control - ↑ Length of detour - Elevation rise of road profile - If all the existing asphalt is removed, would need to put a new bond breaking layer - Removal cost for asphalt	- (1), (4), (8)
REMOVE AND REPLACE WITH ASPAHLT OR CONCRETE	- ↑ Durability (concrete) - ↑ Design life (concrete) - ↓ Maintenance (concrete) - No elevation rise of road profile	- ↑ Cost - ↑ Time to construct - ↑ Traffic control - ↑ Length of detour - Frequent maintenance (asphalt) - ↓ Durability (asphalt) - ↓ Design life (asphalt) - Removal cost for asphalt	- (1), (2), (3), (4), (6), (7), (8), (9)

Note:(↑) Indicates relatively higher or increased, (↓) Indicates relatively lower or decreased, compared to asphalt mill and overlay

Table 6-2 – Estimated Costs for Pavement Materials and Treatments

Material/Treatment	Estimated Cost*
(1) Removal of HMA Planing (Milling)	\$2.50/yd ²
(2) HMA Unmodified	\$85/ton
(3) HMA Polymer Modified	\$100/ton
(4) PCCP	\$5.50/yd ² -inch
(5) Concrete Pulverization	\$3.50 yd ²
(6) ABC	\$50/yd ²
(7) ABC	\$40/ton
(8) Removal of HMA	\$15/yd ²
(9) Removal of PCCP	\$8.50/yd ²

Note:

Hot Mix Asphalt (HMA)
Portland Cement Concrete Pavement (PCCP)

Aggregate Base Course (ABC)

*Local Colorado costs for comparison only and not for construction.

6.2 Traffic Loading

Traffic information used for the design of pavement on this project was based on estimated current and projected volumes provided by MDT. We used the truck distribution data provided by MDT and a growth rate of 1.2 percent for loading calculations. Table 6-3 shows a summary of the projected 20-Year traffic volume and traffic loading. The traffic volumes and traffic loading provided to us by MDT are presented in Appendix E.

 Year
 Volume (AADT)
 Total 20-Year Loading (ESAL) (ESAL)
 Total 20-Year Loading (ESAL)

 2023
 7,770
 9,567,682
 13,768,116

 2043
 9,860

Table 6-3 - Design Traffic Loading

6.3 Subgrade Strength

CBR values ranged from 22 to 59.1, with the A-1-a soils yielding CBR values of 31 and 40, A-1-b soils yielding values from 22 to 41.5, and A-2-4 soils yielding a value of 59.1. The A-2-4 soils were encountered in 3 borings, 2 at either end of the project; we do not believe the A-2-4 soil is representative of the mainline on the project. The A-1-a soils had a resilient modulus of 21,791 psi and the A-1-b soils had a resilient modulus of 22,701 psi. We selected a resilient modulus of 22,000 psi for use in preliminary pavement design. The CBR values correlate to resilient modulus values greater than 22,000 psi.

6.4 Pavement Design

We ran preliminary pavement design analysis using the 1993 AASHTO Pavement Design Guide and the AASHTOWare Pavement ME Design software. Based on our calculations using *Equation 1.2.1* from the 1993 AASHTO Pavement Design Guide and by using AASHTOWare Pavement M-E Design software, we anticipate both rigid and flexible pavement design sections will be 9 to 10 inches for new pavement sections, or 8 to 10 inches for overlayed pavement sections. The preliminary pavement thicknesses apply to the four repair options outlined in Table 6-1. Once a repair option is selected, we will perform more detailed analysis and prepare a final pavement design.

5.4 HMA Mix and Binder Recommendations

The Long-Term Pavement Performance Program *LTPPBind* recommends using a PG 64-28 asphalt binder for the top mat, a PG 64-28 binder for the lower lift at a depth of 2 inches, and PG 58-28 binder for mixes placed at a depth of 3 inches. For the top mat, a PG 70-28 binder would meet the low temperature requirement, exceed the high temperature requirements, and may be recommended based on local experience because of large truck volume. An alternative could be to construct the top HMA lift at a thickness of 3 inches and use a PG 58-28 binder for HMA mixes for the lifts below that. The asphalt binder recommendations were produced using data from nearby weather stations in Mullan, Wallace, and Kellogg, Idaho and Thompson Falls and Haugan, Montana. A copy of the LTPPBind print-out for this project is presented in Appendix F.

7 OTHER CONSTRUCTION CONSIDERATIONS

7.1 Corrosion Potential

We submitted twelve samples to Colorado Analytical Laboratories, Inc. for chemical testing that included water-soluble sulfates and chlorides, pH, and resistivity. The samples had pH values ranging from 7.0 to 10.5. The water-soluble sulfate concentrations ranged from 0.001 to 0.012 percent and the water-soluble chloride concentrations ranged from 0.0030 to 0.0478 percent. The resistivity values were 849 to 4548 ohm-centimeters.

The concentrations of water-soluble sulfates measured on the twelve samples were all less than 0.1 percent. Sulfate concentrations less than 0.1 percent indicate negligible exposure to sulfate attack for concrete which comes into contact with the subsoils according to the American Concrete Institute (ACI). ACI indicates Type I or Type II cement can be used for concrete which comes into contact with subsoils. Superficial damage can occur to the exposed surfaces of highly permeable concrete, even though sulfate levels are less than 0.1 percent. To reduce this, the water to cement ratio should not exceed 0.52 for concrete in contact with soils which are likely to stay moist due to surface drainage or high water tables.

The corrosion potential measurements should be used to help determine the type of culvert materials or other metal to be used in contact with soils on this project. A qualified corrosion engineer should review this data to determine the appropriate level of corrosion protection.

8 LIMITATIONS

The recommendations in this preliminary report are based on our field observations, laboratory testing, and present understanding of the proposed construction. It is possible that subsurface conditions can vary beyond what we encountered in our widely-spaced borings. If the conditions found during construction differ from those described in this report, please notify us immediately so that we can review our report and provide supplemental recommendations as necessary. We should also review this report if the scope of the proposed construction changes from that described in this report.

Yeh and Associates has prepared this report for the exclusive use of Montana Department of Transportation for the proposed rehabilitation of Interstate 90 in Mineral County, Montana. This report was prepared in substantial accordance with the generally accepted standards of practice for geotechnical engineering as exist in the site area at the time of our investigation. No warranty is expressed or implied. The recommendations in this report are based on the assumption that Yeh and Associates will conduct an adequate program of construction testing and observation to evaluate compliance with our recommendations.

9 REFERENCES

- AASHTO Guide for Design of Pavement Structures. American Association of State Highway And Transportation Officials, 1993.
- Lonn, Jeffrey D., and McFadden, Mark D., "Geologic Map of the Montana Part of the Wallace 30' x 60' Quadrangle" Montana Bureau of Mines and Geology, Open File No. 385, scale 1:100,000, 1999.
- Stickney, M., Haller, K., and Machette, M., 2000, Quaternary Faults and Seismicity in Western Montana. Montana Bureau of Mines and Geology, Special Publication No. 114, Scale 1:250,000.

Appendix A

BORING LOCATION PLAN

Yeh and Associates, Inc.

Geotechnical · Geological · Construction Services

MDT★

NO.	SHEET REVISION	BY	DATE	
				1
				_
				3
				i
				(
				ı

REUSE OF DOCUMENT
This document is the property of Yeh &
Associates, Inc. The ideas incorporated on this
document are instruments of professional
service and shall not be used for any other
project without written authorization from Yeh
& Associates, Inc.

	DRAWN BY:MJW	DATE: 10/15/2020	
	CHECKED BY: SCS	DATE: 10/15/2020	
n this	DESIGNED FOR: MONTANA DEPART OF	F TRANSPORTATION	
	PROJECT NUMBER: 219-371		
Yeh	SCALE		1
	HORIZ: 1:2500	VERT:	'
			l

I-90 TAFT WEST

BORING LOCATION PLAN

OF

OF

● APPROXIMATE BORING LOCATION

MDT☆

NO.	SHEET REVISION	BY	DAIL

REUSE OF DOCUMENT

This document is the property of Yeh & Associates, Inc. The ideas incorporated on this document are instruments of professional service and shall not be used for any other project without written authorization from Yeh & Associates, Inc.

	DRAWN BY:MJW DATE: 9/28/2020 CHECKED BY: SCS DATE: 9/28/2020 DESIGNED FOR: MONTANA DEPART OF TRANSPORTATION	I-90 TAFT WEST	SHEET
	PROJECT NUMBER: 219-371		2
h	SCALE	BORING LOCATION PLAN	OF
	HORIZ: 1:350 VERT:	BOILING EGO//116IV 1 E/IIV	7

APPROXIMATE BORING LOCATION

MDT★

NO.	SHEET REVISION	BY	DAIL

REUSE OF DOCUMENT
This document is the property of Yeh &
Associates, Inc. The ideas incorporated on this
document are instruments of professional
service and shall not be used for any other
project without written authorization from Yeh
& Associates, Inc.

	DRAWN BY: MJW DATE: 10/15/2020		
	CHECKED BY: SCS DATE: 10/15/2020	I-90 TAFT WEST	SHEET
his	DESIGNED FOR: MONTANA DEPART OF TRANSPORTATION		-
	PROJECT NUMBER: 219-371		3
eh	SCALE	BORING LOCATION PLAN	OF
	HORIZ: 1:350 VERT:	DUNING LUCATION I LAN	7
			i

APPROXIMATE BORING LOCATION

MDT★

NO.	SHEET REVISION	BY	DATE

REUSE OF DOCUMENT
This document is the property of Yeh &
Associates, Inc. The ideas incorporated on this
document are instruments of professional
service and shall not be used for any other
project without written authorization from Yeh
& Associates, Inc.

	DRAWN BY:MJW DATE: 9/28/2020		1
	CHECKED BY: SCS DATE: 9/28/2020	I-90 TAFT WEST	SHEET
is	DESIGNED FOR: MONTANA DEPART OF TRANSPORTATION		1 .
	PROJECT NUMBER: 219-371		4
h	SCALE	BORING LOCATION PLAN	OF
	HORIZ: 1:350 VERT:	DUNING LUCATION I LAN	7
			1

● APPROXIMATE BORING LOCATION

MDT★

NO.	SHEET REVISION	BY	DAIL

REUSE OF DOCUMENT

This document is the property of Yeh & Associates, Inc. The ideas incorporated on this document are instruments of professional service and shall not be used for any other project without written authorization from Yeh & Associates, Inc.

	DRAWN BY:MJW DATE: 9/28/2020		ĺ
	CHECKED BY: SCS DATE: 9/28/2020	I-90 TAFT WEST	SHEET
is	DESIGNED FOR: MONTANA DEPART OF TRANSPORTATION		_
	PROJECT NUMBER: 219-371		5
h	SCALE	BORING LOCATION PLAN	OF
	HORIZ: 1:350 VERT:	DUNING LUCATION I LAN	7
			i

● APPROXIMATE BORING LOCATION

MDT☆

NO.	SHEET REVISION	BY	DAIL
			, and

REUSE OF DOCUMENT
This document is the property of Yeh &
Associates, Inc. The ideas incorporated on this
document are instruments of professional
service and shall not be used for any other
project without written authorization from Yeh
& Associates, Inc.

	DRAWN BY:MJW	DATE: 9/28/2020		i
	CHECKED BY: SCS	DATE: 9/28/2020	I-90 TAFT WEST	SHEET
7	DESIGNED FOR: MONTANA DEPART OF TRA	NSPORTATION		
	PROJECT NUMBER: 219-371			8
	SCALE		BORING LOCATION PLAN	OF
	HORIZ: 1:350	VERT:	DOMING EDUCATION LEAN	7
				i

APPROXIMATE BORING LOCATION

SHEET

OF

MDT☆

NO.	SHEET REVISION	BY	DAIL
			, and

REUSE OF DOCUMENT

This document is the property of Yeh & Associates, Inc. The ideas incorporated on this document are instruments of professional service and shall not be used for any other project without written authorization from Yeh & Associates, Inc.

	DRAWN BY:MJW	DATE: 9/28/2020		
	CHECKED BY: SCS	DATE: 9/28/2020	□ I-90 TAFT WEST	
iis	DESIGNED FOR: MONTANA DEPAR	T OF TRANSPORTATION		
	PROJECT NUMBER: 219-371			
h	SCALE		BORING LOCATION PLAN	
	HORIZ: 1:350	VERT:	DOMING EDUCATION LEAN	
		·		

Appendix B

BORING LOGS

Project:

I-90 - Taft West

Project Number:

219-371

Legend for Symbols Used on Borehole Logs Sample Types

Bulk Sample of auger/odex cuttings

Rock core

Modified California Sampler (2.5 inch OD, 2.0 inch

Standard Penetration Test (ASTM D1586)

Drilling Methods

CORING

HOLLOW-STEM AUGER

CORING

Lithology Symbols (see Boring Logs for complete descriptions)

Fill with Gravel as

Poorly-graded

Gravelly Sand

Asphalt

major soil

USCS Lean/Low Plasticity Clay Fill with Sand as

USCS Low Plasticity

Organic silt or clay

major soil

Concrete

Clay

USCS Silty, Clayey

Low Plasticity Sandy

Fill with Clay as major soil

USCS Poorly-graded Gravel

USCS Clayey Sand

USCS Silty Sand

Lab Test Standards

Moisture Content **ASTM D2216 Dry Density** ASTM D7263

Sand/Fines Content ASTM D421, ASTM C136,

ASTM D1140

Atterberg Limits **ASTM D4318** AASHTO Class. AASHTO M145, ASTM D3282

USCS Class. **ASTM D2487** (Fines = % Passing #200 Sieve

Sand = % Passing #4 Sieve, but not passing

#200 Sieve)

Other Lab Test Abbreviations

Soil pH (AASHTO T289-91) pН

S Water-Soluble Sulfate Content (AASHTO T290-91,

ASTM D4327)

Chl Water-Soluble Chloride Content (AASHTO T291-91,

ASTM D4327)

Swell/Collapse (ASTM D4546) S/C

UCCS Unconfined Compressive Strenath

(Soil - ASTM D2166, Rock - ASTM D7012) R-Value Resistance R-Value (ASTM D2844)

DS (C) Direct Shear cohesion (ASTM D3080) DS (phi) Direct Shear friction angle (ASTM D3080) Re Electrical Resistivity (AASHTO T288-91) PtL Point Load Strength Index (ASTM D5731)

Notes

- 1. Visual classifications are in general accordance with ASTM D2488, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)".
- 2. "Penetration Resistance" on the Boring Logs refers to the uncorrected N value for SPT samples only, as per ASTM D1586. For samples obtained with a Modified California (MC) sampler, drive depth is 12 inches, and "Penetration Resistance" refers to the sum of all blows. Where blow counts were > 50 for the 3rd increment (SPT) or 2nd increment (MC), "Penetration Resistance" combines the last and 2nd-to-last blows and lengths; for other increments with > 50 blows, the blows for the last increment are reported.
- 3. The Modified California sampler used to obtain samples is a 2.5-inch OD, 2.0-inch ID (1.95-inch ID with liners), split-barrel sampler with internal liners, as per ASTM D3550. Sampler is driven with a 140-pound hammer, dropped 30 inches per blow.
- 4. "ER" for the hammer is the Reported Calibrated Energy Transfer Ratio for that specific hammer, as provided by the drilling company.

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West Project Name:

Project Number: 219-371

Boring No.: YA-EB-1

Boring Began: 9/3/2020 Boring Completed: 9/3/2020

Drilling Method(s): Coring /

Driller: O'Keefe Drilling

Hollow-Stem Auger

Drill Rig: Mobile B-61 HDX Hammer: Automatic (hydraulic), ER: 82.7% Total Depth: 5.0 ft Ground Elevation:

Coordinates: Lat: 47.449885 Long: -115.693818

Location:

Logged By: L. Safari Final By: L. Safari

Night Work:

Weather Notes: Sunny, warm

Inclination from Horiz.: Vertical

PAGE

1 of 1

Groundwater Levels: Symbol Depth Date

			epth	þ	Soil Samp	oles					Ħ	Į.	Ħ		berg nits		
Elevation	(feet)	Depth (feet)	Sample Type/Depth	Drilling Method	ni 9 swolg Penetration Resistance		Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
					40-50:3" 27-24-23	50:3"		0.0 - 0.5 ft. ASPHALT (5.5 inches). 0.5 - 1.3 ft. CONCRETE (9.75 inches). 1.3 - 2.5 ft. Silty SAND with gravel (SM) (Fill), dark gray, no to low plasticity, moist, dense. 2.5 - 5.0 ft. Silty SAND with gravel (SM), light gray, no plasticity, dry, dense to very dense.	2.5		32.0	52.0	16.0	NV	NP	A-1-b (0) SM	pH=10.4 S=0.009% Chl=.0118% Re=2050ohm·cm
<i>;</i> [5 -						Dattama of Hala at C Off	-	-	-						

Bottom of Hole at 5.0 ft.

Project Name: I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-EB-2

Boring Began: 9/3/2020	Total Depth: 1.2 ft	Weather Notes: Sunny, warm
Boring Completed: 9/3/2020	Ground Elevation:	Inclination from Horiz.: Vertical

Drilling Method(s): Coring Coordinates: Lat: 47.44313 Long: -115.690491

Driller: A-Core Location: Night Work: □

Drill Rig:
Hammer: , ER: %
Logged By: L. Safari
Symbol
Depth - - -

Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration ® Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)	Plasticity stiu	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (6 inches).						
	_					P A A	0.5 - 1.2 ft. CONCRETE (8.25 inches).						

Bottom of Hole at 1.2 ft.

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

50:5"

50:5"

Project Name: I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-EB-3

Boring Began: 9/3/2020 Total Depth: 10.5 ft Weather Notes: Sunny, warm

Boring Completed: 9/3/2020 Ground Elevation: Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.438263 Long: -115.682598

Hollow-Stem Auger Location: Night Work:

Date Soil Samples Atterberg Sample Type/Depth Gravel Content (%) Sand Content (%) Fines Content (%) Limits **Drilling Method** Dry Density (pcf) Elevation (feet) Moisture Content (%) Lithology Field Notes Penetration Resistance AASHTO Depth (feet) and **Blows** & USCS Plasticity Index **Material Description** Liquid Limit Classifi-Other Lab per cations Tests 6 in 0.0 - 0.5 ft. ASPHALT (5.5 inches). 0.5 - 1.2 ft. CONCRETE (8.5 inches). 1.2 - 10.5 ft. Silty SAND with gravel 1.5 ft - Slightly (SM) (Fill), brown to light gray, no to low plasticity, moist, medium dense to clayey from 1.2 to very dense. 3.0 ft pH=8.8 S=.005% 11-39-30 69 A-1-b (0) Chl=.0151% 37.0 19.0 NV NP 4.4 44.0 SM Re=2064ohm·cm 29 10-14-15 5

Bottom of Hole at 10.5 ft.

10

9/3/20 eted: 9/ l(s): Co Ho e Drillin le B-61	/ 3/2020 oring / Ilow-Stem <i>A</i> g		truction	n Services			-115.6	73688		ring I	٧	Veath		-	
eted: 9/ I(s): Co Ho e Drillin le B-61	/ 3/2020 oring / Ilow-Stem <i>A</i> g	Auger			Ground Elevation: Coordinates: Lat: 47.43448	5 Long:	-115.6	73688	3					-	
	HDX				-							Weather Notes: Sunny, wa Inclination from Horiz.: Ver Night Work: Groundwater Levels:			
	nydraulic), E	R: 82.	7%		Logged By: L. Safari Final By: L. Safari					Sym Dep Date	oth	-		- 	
Sample Type/Depth Drilling Method	Soil Sam Blows per 6 in	Penetration sa Resistance	Lithology	М	aterial Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Lidnid Limit Limit	Plasticity spin of the spin of	AASHTO & USCS Classifi- cations	Field Note and Other Lab Tests	
				0.7 - 10.5 gravel (S	ft. Silty, clayey SAND with C-SM) (Fill), brown to light										
	12-13-34	47				4.4		30.0	44.0	26.0	23	6	A-2-4 (0) SC-SM		
	15-15-19	34												pH=8.2 S=0.001% Chl=0.0396% Re=871ohm·cm	
	24-33-25	58													
	Sample Type Drilling Me	12-13-34	12-13-34 47	12-13-34 47 F	0.0 - 0.7 ft 0.7 - 10.5 gravel (St gray, low dense.) 12-13-34 47	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense.	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47 15-15-19 34	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47 4.4	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47 15-15-19 34	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with grayel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47 Ft. Ft. Silty, clayey SAND with gray, low plasticity, dry, dense to very dense. 4.4 30.0 44.0 26.0 23 15-15-19 34 Ft.	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with grayel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47	0.0 - 0.7 ft. ASPHALT (8 inches). 0.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), brown to light gray, low plasticity, dry, dense to very dense. 12-13-34 47 F F F F F F F F F F F F F F F F F F	

		1	Yeh	aı	nd A	Asso	ocia	tes,	Inc.	Project Name:		I-90) - Ta	aft V	Vest				PAG 1 of		
		G	eotech	nical	• Geol	logical	• Const	Project Number: 219-371 Box						ring No.: YA-EB-5							
	Boring Boring	Com	plete	d: 9	/3/202	0												er Notes: S	: Sunny, warm Horiz.: Vertical		
	Drilling	illing Method(s): Coring /								Coordinates: Lat: 47.434	443 Long:	-115.6	373574	1		,	Night V	Vork:			
	Drillor:	Hollow-Stem Auger riller: O'Keefe Drilling								Location:						'		undwater L	ovols:		
					-					Logged By: L. Safari					Sym	nbol	diidwatei L	Leveis.			
	_	Drill Rig: Mobile B-61 HDX Hammer: Automatic (hydraulic), ER: 82.7%								Final By: L. Safari					De		-	-	. -		
ŀ										•					Da	-	rberg				
	_		Jept	- po	3011	Samp		_			9		ent	int	ant	Lir	nits		Field Note		
	Elevation (feet)	Depth	Sample Type/Depth	Drilling Method	Blo p 6	ows er in	Penetration Resistance	Lithology		laterial Description ft. ASPHALT (9.5 inches).	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	and Other Lab Tests		
									0.0 - 0.0 1	L ASPITALI (9.5 mones).											
)					(SM) (Fill	ft. Silty SAND with gravel), brown and light gray, no dry, dense to very dense.											
BONING LOG ZOTS"-SPT COOT STILE 1-90 WIDT TATT. OF 3 ZOTS TET COLOMADO TEMPERALE; SDT ZOTS TET COLOMADO LIBRART, SED 12/0/20			\rangle	$\langle \rangle$	24-38	3-50:4"	88:10"	F			3.5		35.0	43.0	22.0	NV	NP	A-1-b (0) SM			
			/	<u>)</u>				F													
1 0 1		5 -	$\sqrt{\chi}$	$\langle \rangle$		15-29)-50:4"	4"79:10"													
								F													
)		_		_																	
i				_{/}				F	<u>.</u>												
3		10			18-1	8-18	36	F													
:				NIII]			<u> </u>	Во	ottom of Hole at 10.5 ft.											
-																					
,																					
3																					
í																					
, ,																					

I-90 - Taft West Project Name:

PAGE 1 of 1

Groundwater Levels:

Boring No.: YA-EB-6 Project Number: 219-371

Boring Began: 9/3/2020 Total Depth: 1.2 ft Boring Completed: 9/3/2020 Ground Elevation: Drilling Method(s): Coring Coordinates: Lat: 47.434254 Long: -115.663288

Drill Rig:

Driller: A-Core

Hammer: , ER: %

Weather Notes: Sunny, warm Inclination from Horiz.: Vertical

Night Work: Location:

Symbol Logged By: L. Safari Depth Final By: L. Safari Date

	Depth (feet) Type/D	epth	ng Metho	Soil Samples						ıt		rberg nits		
Elevation (feet)		Type/D		Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.75 inches).							
	_					P A A	0.5 - 1.2 ft. CONCRETE (8.25 inches).							

Bottom of Hole at 1.2 ft.

Project I-90 - Taft West Name:

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-EB-7

Boring Began: 9/3/2020Total Depth: 1.2 ftWeather Notes: Sunny, warmBoring Completed: 9/3/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring Coordinates: Lat: 47.434329 Long: -115.654297

Driller: A-Core Location: Night Work: □

Drill Rig:
Hammer: , ER: %
Logged By: L. Safari
Symbol
Depth - - -

	eet) epth feet) Type/D	epth	g.	Soil Samples						ıt		berg		
Elevation (feet)		ļ	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.75 inches).							
	_					P A A	0.5 - 1.2 ft. CONCRETE (9 inches).							
		_					D-H							

Bottom of Hole at 1.2 ft.

Project I-90 - Taft West Name:

Boring No.: YA-EB-8

PAGE

1 of 1

Project Number: 219-371 Boring Began: 9/3/2020 Total Depth: 5.5 ft Weather Notes: Sunny, warm Inclination from Horiz.: Vertical Boring Completed: 9/3/2020 Ground Elevation:

Drilling Method(s): Coring / Coordinates: Lat: 47.43113 Long: -115.645392

Night Work: Hollow-Stem Auger Location:

Driller: O'Keefe Drilling Groundwater Levels: Symbol Drill Rig: Mobile B-61 HDX Logged By: L. Safari Depth Hammer: Automatic (hydraulic), ER: 82.7% Final By: L. Safari Date

		epth	p-	Soil Samp	les					ıt.	t	t	Atter Lin		·	
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.5 inches).									
	_					A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.5 - 1.2 ft. CONCRETE (9 inches).									
							1.2 - 5.5 ft. Well-graded SAND with silt and gravel (SW-SM) (Fill), dark brown to brown, light gray, no									
	_	\setminus		10-15-37	52		plasticity, dry to moist, dense.	4.9		41.0	47.0	12.0	NV	NP		pH=7 S=0.002% ChI=0.0369% Re=1028ohm·cm
	5 —	X		21-19-15	34											

Bottom of Hole at 5.5 ft.

Boring Began: 9/3/2020

Boring Completed: 9/3/2020

Project I-90 - Taft West Name:

Project Number: 219-371

Total Depth: 1.2 ft Weather Notes: Sunny, warm

Ground Elevation: Inclination from Horiz.: Vertical

Boring No.: YA-EB-9

PAGE

1 of 1

Drilling Method(s): Coring Coordinates: Lat: 47.42615 Long: -115.638528

Driller: A-Core Location: Night Work: □

 Drill Rig:
 Groundwater Levels:

 Hammer: , ER: %
 Logged By: L. Safari

Final By: L. Safari Depth - - - - Date - - -

		epth	٦	Soil Samp	oles					ıt		rberg nits		
Elevation (feet)	Depth (feet)	Sample Type/De	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Conten (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.5 inches).							
	_					A A A A A A A A A A A A A A A A A A A	0.5 - 1.2 ft. CONCRETE (1.2 inches).							

Bottom of Hole at 1.2 ft.

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

Project I-90 - Taft West Name:

Project Number: 219-371

Boring No.: YA-EB-10

PAGE

1 of 1

Boring Began: 9/3/2020Total Depth: 5.5 ftWeather Notes: Sunny, warmBoring Completed: 9/3/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.421004 Long: -115.631165

Hollow-Stem Auger Location: Night Work:

 Driller: O'Keefe Drilling
 Groundwater Levels:

 Drill Rig: Mobile B-61 HDX
 Logged By: L. Safari
 Symbol

 Hammer: Automatic (hydraulic), ER: 82.7%
 Final By: L. Safari
 Depth

 Date

		pth	٦	Soil Samp	les					Ħ	t	t	Atter Lin			
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.4 ft. ASPHALT (5.25 inches).									
						P A A	0.4 - 1.2 ft. CONCRETE (9.5 inches).									
	_					7 A A										
							1.2 - 5.5 ft. Silty SAND with gravel (SM) (Fill), brown and light gray, no plasticity, dry, medium dense to dense.									
	_	\bigvee		16-23-18	41			16.1		29.0	54.0	17.0	NV	NP	A-1-b (0) SM	
	5 —	X		9-9-9	18											

Bottom of Hole at 5.5 ft.

I-90 - Taft West Project Name:

Boring No.: YA-EB-11 Project Number: 219-371

PAGE

1 of 1

Boring Began: 9/3/2020 Boring Completed: 9/3/2020

Drilling Method(s): Coring

Driller: A-Core

Drill Rig:

Hammer: , ER: %

Total Depth: 1.2 ft Weather Notes: Sunny, warm Ground Elevation: Inclination from Horiz.: Vertical

Coordinates: Lat: 47.418189 Long: -115.621189

Night Work: Location:

Groundwater Levels: Symbol Logged By: L. Safari Depth Final By: L. Safari Date

		epth	p	Soil Sam	oles					nt		rberg nits		·
Elevation (feet)	Depth (feet)	Sample Type/D	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Conter (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.75 inches).							
	_					A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.5 - 1.2 ft. CONCRETE (8 inches).							

Bottom of Hole at 1.2 ft.

Project I-90 - Taft West Name:

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-EB-12

Boring Began: 9/3/2020 Total Depth: 5.5 ft Weather Notes: Sunny, warm Boring Completed: 9/3/2020 Ground Elevation: Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.419456 Long: -115.61604

> Night Work: Hollow-Stem Auger Location:

Driller: O'Keefe Drilling Groundwater Levels: Symbol Drill Rig: Mobile B-61 HDX Logged By: L. Safari Depth Hammer: Automatic (hydraulic), ER: 82.7% Final By: L. Safari Date

		əpth	٦	Soil Samp	les					†	t	ıt	Atter Lin			
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.7 ft. ASPHALT (8 inches).									
	_	ν,					0.7 - 4.5 ft. Silty GRAVEL with sand (GM) (Fill), brown and dark brown, no plasticity, dry to moist, dense.									pH=8.4 S=0.002%
	_	λ		30-32-23	55			5.0		42.0	37.0	21.0	NV	NP		Chl=.0386% Re=1023ohm·cm
	5 —	$\bigg / \bigg /$		34-20-18	38		4.5 - 5.5 ft. Lean CLAY with sand (CL) and gravel, reddish brown, low to medium plasticity, moist, very stiff.									

Bottom of Hole at 5.5 ft.

Project Name: I-90 - Taft West

PAGE 1 of 1

								Project Number: 219-371		Во	ring I	No.:	YA-E	:B-	12A		
Boring	Began	: 9/3	/202	20				Total Depth: 0.7 ft				١	<i>N</i> eathe	er No	tes: S	Sunny,	warm
Boring	Compl	eted	: 9/	3/2020				Ground Elevation:				I	nclinat	tion fr	rom Ho	oriz.: \	/ertical
Drilling	Method	d(s):	Co	ring				Coordinates: Lat: 47.418678 Long: -115	.61818	6							
Driller:	A-Core	9						Location:				1	Night V	Vork:			
Drill Rig	j:												Gro	undw	ater L	evels:	
Hamme	er: , ER	: %						Logged By: L. Safari			Sym						_
								Final By: L. Safari			Da		-		-		-
		epth	pc -	Soil Samp	les						į t		rberg nits				
Elevation (feet)	Depth (feet)	Sample Type/De	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology		Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)	Liquid Limit	Plasticity Index	& U Cla	SHTO ISCS ssifi- tions	Oth	d Notes and er Lab ests
							0.0 - 0.7 ft	ft. ASPHALT (8.5 inches).									

Bottom of Hole at 0.7 ft.

	4 5	eh	ar	d Ass	ocia	tes,	, Inc.	Project Name:		I-90) - Ta	aft V	Vest				PAG 1 of
	Ge	otechn	ical	 Geological 	• Const	ructio	n Services	Project Number: 219-	-371			Во	ring i	No.:	YA-E	EB-13	
Boring Boring Drilling	Comp	leted	: 9 /	3/2020				Total Depth: 6.5 ft Ground Elevation: Coordinates: Lat: 47.41953	39 Long:	-115.	615794	4					Sunny, warm oriz.: Vertical
D :::	0114			low-Stem A	Auger			Location:						ı		Vork:	
Driller: Drill Rig Hamme	g: Mo	bile B	-61		ER: 82.7	7%		Logged By: L. Safari Final By: L. Safari					Sym Dep Da	oth	- - -	undwater L	evels:
		apth	ъ	Soil Sam	ples						Ħ			Atte Lir	rberg nits		
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	N	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Note and Other Lab Tests
							0.0 - 0.7	ft. ASPHALT (8.25 inches).									
							sand (Go brown, li	ft. Silty, clayey GRAVEL with C-GM) (Fill), brown, dark ght gray, reddish brown, low r, dry to moist, dense.									
		$\left. \right\rangle$		8-19-19	38				7.0		41.0	35.0	24.0	24	6	A-1-b (0) GC-GM	
	5 -	X	7	11-43-50	93		gravel (S	ft. Poorly graded SAND with SP), light gray, no plasticity,									
		/ \					dry, very	ft. Poorly graded GRAVEL									
						© 0°	with san √plasticity	ı d (GP) , light gray, no									

I-90 - Taft West

PAGE 1 of 1

Boring No.: YA-EB-14 Project Number: 219-371

Boring Began: 9/3/2020 Total Depth: 1.2 ft Weather Notes: Sunny, warm Boring Completed: 9/3/2020 Ground Elevation: Inclination from Horiz.: Vertical Coordinates: Lat: 47.420753 Long: -115.612533

Drilling Method(s): Coring

Driller: A-Core Location:

Drill Rig: Hammer: , ER: %

Symbol Logged By: L. Safari Depth Final By: L. Safari Date

Night Work:

Groundwater Levels:

% <u>re</u>	sity	- T				
Moisture Content (%)	Dry Dens (pcf)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
_	Mois	Moisi Conter Dry De (pc	Moisi Conter Dry De (pc (pc	Moisi Conter Dry De (pc (pc (pc (pc (pc (pc) (pc) Liquid		

Bottom of Hole at 1.2 ft.

Geo		1 -	C1:1	Cla	tes,	Inc.	Project Name:		1-50	- 10	aft W	CSL				PAGE 1 of
		ıl •	Geological	• Const	ruction	Services	Project Number: 219-3	371_			Во	ring I	Vo.:	Y <u>A</u> -\	VB-1	
	eted: d(s): C	9/2/ Corir Iollo	2020 ng /	uger			Total Depth: 10.5 ft Ground Elevation: Coordinates: Lat: 47.422044 Location:	Long:	-115.6	607756	6		I	nclinat Night V	ion from H	Sunny, warm oriz.: Vertical
: Mobi	ile B-6	1 H		R: 82.7	7%		Logged By: L. Safari Final By: L. Safari					Dep	oth	Gro	undwater L - -	evels:
_	/Depth	DOI:			зу			(%)	sity	tent	tent	-	Atte		AASHTO	Field Notes
Depth (feet)	Sample Type	DIIIIII Me	Blows per 6 in	Penetratic Resistano	Litholog			Moistur Content (Dry Dens (pcf)	Gravel Cor (%)	Sand Con (%)	Fines Con (%)	Liquid Limit	Plasticity Index	& USCS Classifi- cations	and Other Lab Tests
						0.0 - 0.7 1	ft. ASPHALT (8.125 inches).									
_						gravel (S	C-SM) (Fill), light brown and									
_			13-20-18	38				5.7		26.0	48.0	26.0	24	6	A-2-4 (0) SC-SM	
5 —	X		18-18-15	33												pH=8.6 S=0.001% ChI=0.0030% Re=4548ohm·cm
-																
10-			16-12-10	22			others of Union at 10.5 ft									
						J	onom of Fiole at 10.0 h.									
	Depth Depth Depth Seed	Method(s): C H D'Keefe Drill Mobile B-6 r: Automatic Samble Lybe/Depth Samble Tybe/Depth Samble Tybe/Dept	Method(s): Corin Hollo D'Keefe Drilling Mobile B-61 H r: Automatic (hyd Automatic (hyd	Method(s): Coring / Hollow-Stem A D'Keefe Drilling Mobile B-61 HDX r: Automatic (hydraulic), E Soil Samp Blows per 6 in 13-20-18	Method(s): Coring / Hollow-Stem Auger D'Keefe Drilling Mobile B-61 HDX r: Automatic (hydraulic), ER: 82.3 Blows per 6 in 13-20-18 38 18-18-15 33	Method(s): Coring / Hollow-Stem Auger D'Keefe Drilling Mobile B-61 HDX r: Automatic (hydraulic), ER: 82.7% Soil Samples Hollow Stem Auger	Method(s): Coring / Hollow-Stem Auger D'Keefe Drilling Mobile B-61 HDX Tr. Automatic (hydraulic), ER: 82.7% Soil Samples Blows per 6 in under hollow by the first state of the first st	Method(s): Coring / Hollow-Stem Auger Location: D'Keefe Drilling Mobile B-61 HDX Automatic (hydraulic), ER: 82.7% Blows per 6 in Soil Samples Out By Bourd of 6 in Soil Samples Soil Sa	Method(s): Coring / Coordinates: Lat: 47.422044 Long: Location: Discrete Drilling Mobile B-61 HDX Logged By: L. Safari Final By: L. Safari Soil Samples Detail Description Material Description O.0 - 0.7 ft. ASPHALT (8.125 inches). 13-20-18 38 FF 18-18-15 33 FF 18-18-15 33 FF 16-12-10 22 FF 16-12-10 22 FF	Method(s): Coring / Coordinates: Lat: 47.422044 Long: -115.6 Location: D'Keefe Drilling Mobile B-61 HDX Logged By: L. Safari Final By: L. Safari Final By: L. Safari Final By: L. Safari Material Description Material Description O.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), light brown and gray, low plasticity, dry, dense.	Method(s): Coring / Coordinates: Lat: 47.422044 Long: -115.607756 Provided Difference of Hollow-Stem Auger Location: D'Keefe Drilling Mobile B-61 HDX Logged By: L. Safari Final By: L. Safari Final By: L. Safari Material Description Material Description Material Description O.7 - 10.5 ft. Silty, clayey SAND with gravel (SC-SM) (Fill), light brown and gray, low plasticity, dry, dense. 13-20-18 38 18-18-15 33 18-18-15 22 16-12-10 22	Method(s): Coring / Coordinates: Lat: 47.422044 Long: -115.607756 Hollow-Stem Auger Location: D'Keefe Drilling Mobile B-61 HDX Logged By: L. Safari Final By: L. Safari Final By: L. Safari Material Description Blows per 6 in 9 and 1 a	Method(s): Coring / Hollow-Stem Auger	Method(s): Coring / Hollow-Stem Auger Location: Hollow-Stem Auger Location: No. Hollow-Stem Auger L	Method(s): Coring / Coordinates: Lat: 47.422044 Long: -115.607756 Hollow-Stem Auger Location: Significant Hollow-Stem Auger Location: Hollow-Stem Auger Loca	Method(s): Coring / Hellow-Stem Auger

	1 Y	eh	an	d Asso	ocia	tes.	, Inc.	Project Name:		I-90) - T	aft V	Vest				PAG 1 of
	Geo	otechn	cal	• Geological	• Cons	truction	n Services	Project Number: 219-	-371			Во	ring l	No.:	YA-\	NB-2	
Boring Boring Drilling	Comp	leted	9/2	2/2020				Total Depth: 10.0 ft Ground Elevation: Coordinates: Lat: 47.4195	13 Long:	115	62600	Ω					Sunny, warm oriz.: Vertical
Dilliling	Metrio			ow-Stem A	Auger			Location:	is Long.	-115.	02000	o		ı	Night V	Vork:	
Driller: Drill Riહ્ Hamme	g: Mob	ile B	-61 F		-R· 82	7%		Logged By: L. Safari Final By: L. Safari					Sym	oth	Gro -	undwater L	evels:
			T (Soil Sam				27. 2. 2					Da		rberg	1	- -
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	M	laterial Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity spin lndex	AASHTO & USCS Classifi- cations	Field Note and Other Lab Tests
			П				0.0 - 0.4	ft. ASPHALT (5.25 inches).									
	-					A A A A A A A A A A A A A A A A A A A		ft. CONCRETE (9 inches).									
	_					<u> </u>	(SM) (Fill no plastic	ft. Silty SAND with gravel), brown, light brown, gray, city, dry, medium dense to									11.40.5
		X		32-50:5"	50:5"	11 11	very den	se.								A-1-b (0)	pH=10.5 S=0.012% Chl=0.0113% Re=1783ohm·cr
	-					TI			2.6		33.0	51.0	16.0	NV	NP	SM	re-17030IIII CI
	-	\bigvee		14-15-13	28	T 11											
	5 -	Λ		14-13-13	20	T-1-1											
	-	_															
	-	_				T											
	-							ft. Poorly graded SAND with P), brown, no to low, moist.	1								
	-					\$ O C											
	10-		Ш				В	ottom of Hole at 10.0 ft.						<u> </u>		<u> </u>	

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-3

Boring Began: 9/2/2020Total Depth: 10.5 ftWeather Notes: Sunny, warmBoring Completed: 9/2/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.423469 Long: -115.634735

Hollow-Stem Auger Location: Night Work:

Driller: O'Keefe Drilling

Drill Rig: Mobile B-61 HDX

Hammer: Automatic (hydraulic), ER: 82.7%

Logged By: L. Safari

Depth

Depth

Date

Date

Date

			,	, ,,			,					Da	ie	-	. '	- -
		pth	٦	Soil Sam	ples					Ħ		t		rberg nits		
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	,	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.5 inches).									
	_	Ш				A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.5 - 1.2 ft. CONCRETE (8.5 inches).									
							1.2 - 6.5 ft. Silty SAND with gravel (SM) (Fill), brown, tan, light gray, white, low plasticity, dry to moist,									
	-	X		23-50	73		dense to very dense, contains roots.	3.7		24.0	59.0	17.0	NV	NP	A-1-b (0) SM	
	-															
	5 -	\bigvee		16-20-22	42											pH=7 S=0.004% Chl=.0440% Re=1014ohm·cm
	_	-					6.5 - 8.0 ft. Lean CLAY (CL) (Fill), brown, low plasticity, moist.									
	_	_					8.0 - 10.5 ft. Poorly graded SAND with									
	-		, , , ,				gravel (SP) (Fill), brown, gray, tan, white, no to low plasticity, moist, dense, contains bedrock chunks.									
	10-	$\left \right\rangle$		14-18-22	40											
		•	•/-		1		Bottom of Hole at 10.5 ft.		•	1	1		•		J	-
1																

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-4

Boring Began: 9/2/2020 Total Depth: 1.2 ft Weather Notes: Sunny, warm

Boring Completed: 9/2/2020 Ground Elevation: Inclination from Horiz.: Vertical

Drilling Method(s): Coring Coordinates: Lat: 47.428774 Long: -115.639513

Driller: A-Core Location: Night Work: □

Drill Rig:

Hammer: , ER: %

Logged By: L. Safari

Depth - - - -

Final By: L. Safari

Depth - - Date - -

		epth	g -	Soil Samp	oles			_		ıt		rberg nits		
Elevation (feet)	Depth (feet)	Sample Type/D	Drilling Metho	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.4 ft. ASPHALT (5 inches).							
	_					P	0.4 - 1.2 ft. CONCRETE (8.75 inches).							
						م الم								1

Bottom of Hole at 1.2 ft.

Section Sect		Y	eh	ar	nd Asso	ocia	tes,	Inc.	Project Name:		I-90) - Ta	aft V	/est				PAG 1 of
Boring Completed: 9/2/2020 Ground Elevation: Inclination from Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Hollow-Stem Auger Location: Location: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506 Night Work: Symbol Death Horizz: Vertice of Coordinates: Lat: 47.42882 Long: -115.639506		Ge	otech	nical	Geological	• Const	ruction	1 Services	Project Number: 219-	371			Во	ring l	No.:	YA-\	NB-5	
The filler. O'Keefe Drilling Mobile B-61 HIDX Logged By: L. Safari Final By: L. Safari	Boring	Comp	oletec	1: 9/	2/2020				Ground Elevation:		145.00	20500						-
Oriller: O'Keefe Drilling Drill Rig: Mobile B-61 HDX Logged By: L. Safari Final By: L. Saf	Jrilling	weinc	oa(s):		_	ulder				c Long: -	115.63	9506			ı	Niaht V	Vork: □	
Drill Rig: Mobile B-61 HDX Logged By: L. Safari Comparison Compar	Driller:	O'Kee	efe D			lugei			Location.									.evels:
Dotation	_					:R: 82.7	7%							Dep	oth	-		-
0.0 - 0.5 ft. ASPHALT (5.5 inches). 0.5 - 1.2 ft. CONCRETE (8.25 inches). 1.2 - 10.5 ft. Silty SAND with gravel (SM) (Fill), brown, gray, white, rust, no plasticity, dry, dense to very dense. 29-33-40 73 F 21-21-14 35 F 21-21-14 35 F 22-32-50.5*B2-111 F.			pth		Soil Sam	oles												
0.0 - 0.5 ft. ASPHALT (5.5 inches). 0.5 - 1.2 ft. CONCRETE (8.25 inches). (SM) (Fill) brown, gray, white, rust, no plasticity, dry, dense to very dense. 29-33-40 73 Ft. 21-21-14 35 Ft. 21-21-21-21-21-21-21-21-21-21-21-21-21-2	Elevation (feet)	Depth (feet)	Sample Type/De	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	M	laterial Description	Moisture Content (%)	Dry Density (pcf)	Gravel Conten (%)	Sand Content (%)	Fines Content (%)			AASHTO & USCS Classifi- cations	Field Note and Other Lab Tests
29-33-40 73 F								0.0 - 0.5	ft. ASPHALT (5.5 inches).									
1.2 - 10.5 ft. Silty SAND with gravel (SM) (Fill), brown, gray, while, rust, no plasticity, dry, dense to very dense. 29-33-40 73 Ft. 21-21-14 35 Ft. 31-20-20-20-20-20-20-20-20-20-20-20-20-20-							P. P. 4	0.5 - 1.2 inches)	ft. CONCRETE (8.25									
29-33-40 73 F 21-21-14 35 F F 22-32-50:5°B2:111-F								1.2 - 10.5 (SM) (Fill), brown, gray, white, rust, no									
S=0.005% Chi=0.01389 Re=2354ohr			$\frac{1}{2}$		29-33-40	73				4.2		31.0	53.0	16.0	NV	NP	A-1-b (0) SM	
		5 -	X		21-21-14	35												pH=7.3 S=0.005% Chl=0.0138% Re=2354ohm·cr
					22 <u>-</u> 32-50·5'	'82·11'												
		10-	$\frac{1}{2}$		22-02-00.0		F											
Bottom of Hole at 10.5 ft.				-1/ L			l'. [÷.]	В	ottom of Hole at 10.5 ft.			L			<u> </u>		<u> </u>	

	Y	eh	ar	nd Asso	ocia	tes	, Inc.	Project Name:		I-90) - Ta	aft V	/est					PAGE 1 of 1
	Geo	techn	ical	Geological	• Const	ructio	n Services	Project Number: 219	9-371			Во	ring l	Vo.: `	YA-\	NB-6		
Boring	Began	: 9/2	/20	20				Total Depth: 10.0 ft						١	Neath	er Notes:	Sunny,	warm
Boring	Compl	eted	: 9/	2/2020				Ground Elevation:						I	nclina	tion from H	loriz.: `	Vertical
Drilling	Method	d(s):	Со	ring /				Coordinates: Lat: 47.4321	14 Long: -	115.65	51094							
			Но	llow-Stem A	uger			Location:						1	Night V	Vork:		
Driller:	O'Kee	fe Dr	illin	g											Gro	undwater l	_evels:	I
Drill Riç	g: Mob	ile B	-61	HDX				Logged By: L. Safari					Sym					
Hamme	er: Auto	mati	c (h	nydraulic), E	R: 82.	7%		Final By: L. Safari					Dep Da		-		-	_
		epth	p	Soil Samp	ples						t	ıt	=		rberg nits			
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	N	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTC & USCS Classifi- cations	Oth	d Notes and ner Lab ſests
			П				0.0 - 0.4	ft. ASPHALT (4.5 inches).										
	_					P A A	0.4 - 1.2 inches).	ft. CONCRETE (9.25										
						F	(SM) (Fil	ft. Silty SAND with gravel I), brown, light gray, white, no dry, very dense.	0									
	_	\setminus		23-42-50	92	FF			2.9		43.0	44.0	13.0	NV	NP	A-1-a (0) SM		
	5 -	\bigvee		28-36-34	70	FF												

|/ \|{||

16

2-1-15

Bottom of Hole at 10.0 ft.

8.0 - 10.0 ft. Sandy lean CLAY with gravel (CL), brown to reddish brown, low to medium plasticity, moist, soft to stiff.

BORING LOG 2019 - SPT CDOT STYLE 1-90 MDT TAFT.GPJ 2019 YEH COLORADO TEMPLATE.GDT 2019 YEH

	Y	eh	an	d Asso	ocia	tes	, Inc.	Project Name:			I-90	- Ta	aft V	/est				PAGE 1 of 1
	Geo	otechni	cal	 Geological 	• Const	ruction	n Services	Project Number:	219-3	71			Во	ring i	No.: `	YA-\	N B-7	
Boring	Began	: 9/2	/202	20				Total Depth: 10.0 ft							١	Neath	er Notes: S	Sunny, warm
Boring	Comp	leted	9/	2/2020				Ground Elevation:							I	nclina	tion from H	oriz.: Vertical
Drilling	Metho	d(s):	Co	ring /				Coordinates: Lat: 47.	432183	Long:	-115.6	51197	7					
			Hol	low-Stem A	uger			Location:							1	Night V	Vork:	
Driller:	O'Kee	fe Dr	illing	9												Gro	undwater L	evels:
Drill Ri	g: Mob	ile B-	61	HDX				Logged By: L. Safar	i					Sym				
Hamm	er: Auto	omati	c (h	ydraulic), E	R: 82.	7%		Final By: L. Safari						Da		_		-
		pth	_	Soil Samp	oles										Atte	rberg		
ا و د (/De	Drilling Method		 	g g				(%)	sity	Gravel Content (%)	Sand Content (%)	Fines Content (%)	LII	nits	AASHTO	Field Notes
Elevation (feet)	Depth (feet)	Гуре	g Me	Blows	Penetration Resistance	Lithology	M	Material Description		Moisture Content (%)	Dry Density (pcf)	<u>8</u>	S 0 0 8	Cor (%)	₽.±	× cit	& USCS Classifi-	and
He H	ے ت	ble.	illing	per 6 in	neti sist	Ę		•		Mo	Dry (ave	and	ines ,	Liquid Limit	Plasticity Index	cations	Other Lab Tests
		Sample Type/Depth	▯◚	0 111	ag ag							Ō	S	Н				
			П				0.0 - 0.4	ft. ASPHALT (5 inches).										
						F	0.4 - 8.0 f	ft. Poorly graded SAND gravel (SP-SM) (Fill), bro	with									
	-					F	gray, ligh	nt gray, no plasticity, dry										
						F	moist, ve	ery dense.										
	-	\ ,	И			F												
		$\backslash /$	{			F											A 1 a (0)	
18/20	_	X		26-31-32	63	F				3.6		31.0	58.0	11.0	NV	NP	A-1-a (0) SP-SM	
B 12		$/ \setminus$				<u> </u>												
.≪.GL		\setminus /																
BRAF	_	X	И	27-32-39	71	- -												
		$/ \setminus$				F												
ORA	5 -	/:::::?	1//			F												
			(
9 YE	-					F												
T 201			M															
de la	_																	
EA!			MI			₽.												
TEM			$\left \left \right \right $															
ADO			$ \rangle $			Ē	8.0 - 9.5 t	ft. Organic CLAY with s), black to dark brown, l	and									
OLOF PION			(F		, moist, contains glass p										
Ŏ H	-					F												
7 9 Y		M	И	5-6	11		9.5 - 10.0) ft. Sandy lean CLAY w	rith									
PJ 22	10-		Ш				gravel (C	L) , reddish brown, low t plasticity, moist, stiff.										
FI.G								ottom of Hole at 10.0 ft.										
7																		
JW 06																		
<u>-</u>																		
TSL																		
ODO CDO																		
BORING LOG 2019 - SPT CDOT STYLE 1-90 MDT TAFT.GPJ 2019 YEH COLORADO TEMPLATE.GDT 2019 YEH COLORADO LIBRARY.GLB 12/8/20																		
2019																		
90]																		
S NG																		
Ö																		

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-8

Boring Began: 9/4/2020Total Depth: 3.8 ftWeather Notes: Sunny, coolBoring Completed: 9/4/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.43604 Long: -115.658479

Hollow-Stem Auger Location: Night Work: □

 Driller: O'Keefe Drilling
 Groundwater Levels:

 Drill Rig: Mobile B-61 HDX
 Logged By: L. Safari
 Symbol

 Hammer: Automatic (hydraulic), ER: 82.7%
 Final By: L. Safari
 Depth

 Date

_		epth	po	Soil Samp	oles					ant	nt	nt		berg nits	•	
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.4 ft. ASPHALT (5 inches).									
	_						0.4 - 1.2 ft. CONCRETE (8.5 inches).									
						F	1.2 - 3.8 ft. Well-graded SAND with silt and gravel (SW-SM) (Fill), brown, light gray, white, no plasticity, dry, very									40.4
		\setminus		34-40-50:3"	90:9"	F	dense.					40.0	• • • •			pH=10.4 S=0.007% Chl=0.0090% Re=2924ohm·cm
		/ \ /		50:3"	50:3"	F		1.7		39.0	51.0	10.0	NV	NP	SW-SM	
ı	—	_	ш		100.0		Dattana at IIala at 2.0 ft		<u> </u>							

Bottom of Hole at 3.8 ft.

Z	Ye	eh	an	d Asso	ocia	tes,	, Inc.	Project Name:		I-90) - Ta	aft V	/est					PAGE 1 of
	Geo	techni	cal	 Geological 	• Const	ructio	n Services	Project Number: 219	-371			Во	ring i	No.:	YA- \	NB-9		
Boring	Began	9/4	/202	20				Total Depth: 10.5 ft						١	Neath	er Notes: S	Sunny, v	varm
Boring	Compl	eted	9/	4/2020				Ground Elevation:						ı	nclina	tion from H	oriz.: V	ertical
Drilling	Method	d(s):	Co	ring /				Coordinates: Lat: 47.4336	59 Long:	-115.6	668232	2						
			Hol	low-Stem A	uger			Location:						1	Night V	Vork: 🗌		
Driller:	O'Keef	e Dr	lling	9											Gro	undwater L	evels:	
Drill Riç	g: Mobi	le B-	61	HDX				Logged By: L. Safari					Sym					
Hamme	er: Auto	mati	c (h	ydraulic), E	R: 82.	7%		Final By: L. Safari					Da		-			-
		epth	pq.	Soil Samp	oles						Ħ	Ħ	†		rberg nits			
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	N	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	>	AASHTO & USCS Classifi- cations	Othe	Notes and er Lab ests
			П				0.0 - 0.5	ft. ASPHALT (5.5 inches).										
						7 A A	0.5 - 1.2	ft. CONCRETE (8.5 inches).										
						F	silt and and light	5 ft. Poorly graded SAND wit gravel (SP-SM) (Fill), brown gray, no plasticity, dry, dense										
	_	\setminus		12-18-22	40	FF	to very d	ense.	2.9		38.0	50.0	12.0	NV	NP	A-1-a (0) SP-SM		
	5 —	X		10-10-24	34													

Bottom of Hole at 10.5 ft.

50:1"

17-50:1"

10

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-10

Boring Began: 9/4/2020Total Depth: 5.0 ftWeather Notes: Sunny, warmBoring Completed: 9/4/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.436181 Long: -115.678237

Hollow-Stem Auger Location: Night Work:

 Driller: O'Keefe Drilling

 Drill Rig: Mobile B-61 HDX
 Logged By: L. Safari
 Symbol Depth

 Hammer: Automatic (hydraulic), ER: 82.7%
 Final By: L. Safari
 Date

		pth	٦	Soil Samp	les					<u>+</u>				berg nits		
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.4 ft. ASPHALT (5.25 inches).									
	_					A A A A A A A A A A A A A A A A A A A	0.4 - 1.2 ft. CONCRETE (8.75 inches).									
						<u> TT</u>	1.2 - 5.0 ft. Silty SAND with gravel (SM) (Fill) , brown and gray, no plasticity, dry to moist, very dense.									
	_	\setminus		19-37-50:3"	87:9"			4.1		28.0	59.0	13.0	NV	NP	A-1-b (0) SM	
	_	\setminus		2-24-50:5.5	74:11"											

Bottom of Hole at 5.0 ft.

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-11

Boring Began: 9/4/2020Total Depth: 10.5 ftWeather Notes: Sunny, warmBoring Completed: 9/4/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.440835 Long: -115.686224

Hollow-Stem Auger Location: Night Work:

 Driller: O'Keefe Drilling

 Drill Rig: Mobile B-61 HDX
 Logged By: L. Safari
 Symbol Depth

 Hammer: Automatic (hydraulic), ER: 82.7%
 Final By: L. Safari
 Date

			`	,			•					Da	ie			-
		epth	р	Soil Samp	oles					nt	ıt	ıt		berg		
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
			П				0.0 - 0.4 ft. ASPHALT (5 inches).									
	_					A A A A A A A A A A A A A A A A A A A	0.4 - 1.2 ft. CONCRETE (8.5 inches).									
							1.2 - 3.0 ft. Silty SAND with gravel (SM) (Fill), brown, gray, tan, no plasticity, dry, very dense.									
		X		25-50:4"	50:4"			4.3		32.0	53.0	15.0	NV	NP	A-1-a (0) SM	
							3.0 - 10.5 ft. Clayey SAND with gravel (SC) (Fill), brown and gray, no to low plasticity, moist, dense to very dense.	_								
	5	\setminus		11-17-19	36											
	_															
	-															
	10-	X		6-45-22	51											
		/ \	Ш			· ' · ·	Bottom of Hole at 10.5 ft.									

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371 Boring No.: YA-WB-12

Boring Began: 9/4/2020Total Depth: 5.5 ftWeather Notes: Sunny, warmBoring Completed: 9/4/2020Ground Elevation:Inclination from Horiz.: Vertical

Drilling Method(s): Coring / Coordinates: Lat: 47.446375 Long: -115.692639

Hollow-Stem Auger Location: Night Work:

 Driller: O'Keefe Drilling

 Drill Rig: Mobile B-61 HDX
 Logged By: L. Safari
 Symbol Depth

 Hammer: Automatic (hydraulic), ER: 82.7%
 Final By: L. Safari
 Date

												Da				
		pth		Soil Samp	oles					t			Atter Lin			
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity ନି	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
							0.0 - 0.5 ft. ASPHALT (5.75 inches).									
	_					A 1 A A	0.5 - 1.1 ft. CONCRETE (7.75 inches).									
							1.1 - 5.5 ft. Silty SAND with gravel (SM) (Fill), brown to light gray, no plasticity, dry, dense to very dense.									
		\ /	{ -				, , , , , ,									
	_	\setminus		34-44-30	74			3.3		26.0	58.0	16.0	NV	NP	A-1-b (0) SM	
			1			1										
	5 —	X		14-19-25	44											pH=8.6 S=0.004% ChI=.0478% Re=849ohm·cm

Bottom of Hole at 5.5 ft.

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

I-90 - Taft West Project Name:

PAGE 1 of 1

Project Number: 219-371

Boring No.: YA-WB-13

Boring Began: 9/4/2020 Boring Completed: 9/4/2020

Drilling Method(s): Coring /

Driller: O'Keefe Drilling

Hollow-Stem Auger

Drill Rig: Mobile B-61 HDX Hammer: Automatic (hydraulic), ER: 82.7% Ground Elevation:

Coordinates: Lat: 47.452206 Long: -115.693834 Location:

Logged By: L. Safari Final By: L. Safari

Total Depth: 10.5 ft

Groundwater Levels: Symbol Depth Date

Night Work:

Weather Notes: Sunny, warm

Inclination from Horiz.: Vertical

		pth	-	Soil Samp	oles					ıt.			Atter Lin	berg		·
Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity 5	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
		П	П				0.0 - 0.4 ft. ASPHALT (4.75 inches).									
	_					A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.4 - 1.1 ft. CONCRETE (8.25 inches).									
							1.1 - 2.0 ft. Well-graded SAND with gravel (SW) (Fill), brown and light gray, no plasticity, dry, dense.	3.3		36.0	60.0	4.0	NV	NP	A-1-a (0) SW	
02/8/20		\bigvee		13-18-22	40		2.0 - 10.5 ft. Silty SAND with gravel (SM) (Fill), brown and light gray, no plasticity, dry to moist, dense.	5.1		29.0	48.0	23.0	NV	NP		pH=8 S=0.004% Chl=.0259% Re=1414ohm·cm
KY.GLB 12		/ \													SIVI	
IAFT, GFJ ZOT9 TEH COLOKADO IEMPLATE.GDT ZOT9 TEH COLOKADO LIBRARY, GLB 12/8/20	5 -	\setminus		21-16-18	34											
ZU19 YEH CC	-															
IMPLAIE.GDI	-															
OLURADO 16	-															
יחשז פוטב נק	10-	X		12-15-15	30											
AFI.c		/ /	l/L			: F	Bottom of Hole at 10.5 ft.									

Yeh and Associates, Inc.
Geotechnical • Geological • Construction Services

Boring Began: 9/3/2020

Boring Completed: 9/3/2020

Project Name: I-90 - Taft West

PAGE 1 of 1

Project Number: 219-371

Total Depth: 30.5 ftWeather Notes: Sunny, warmGround Elevation:Inclination from Horiz.: Vertical

Boring No.: YA-LP-1

Drilling Method(s): Hollow-Stem Auger Coordinates: Lat: 47.453901 Long: -115.694738

Driller: O'Keefe Drilling Location: Night Work: □

Drill Rig: Mobile B-61 HDX

Groundwater Levels:

	Drill Rig					D. 00	70/	Laured Burn L. Oafari					Sym	bol	Gro ∑	undwater L	eveis:
	натте	er: Auto	mati	c (n	ydraulic), E	R: 82.	/%	Logged By: L. Safari					Dep	oth	6.7	ft -	. -
L								Final By: L. Safari		ı			Da		-	_ -	
			epth	٦	Soil Samp						Ħ	ᆫ	ıt		rberg nits		
	Elevation (feet)	Depth (feet)	Sample Type/Depth	Drilling Method	Blows per 6 in	Penetration Resistance	Lithology	Material Description	Moisture Content (%)	Dry Density (pcf)	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Liquid Limit	Plasticity Index	AASHTO & USCS Classifi- cations	Field Notes and Other Lab Tests
								0.0 - 4.0 ft. Clayey GRAVEL with sand (GC) (Fill) , brown and light gray, low plasticity, dry to moist.	3.5		41.0	36.0	23.0	26	8	A-2-4 (0) GC	
50		5 -	X		20-37-34	71		4.0 - 14.0 ft. Silty, clayey SAND with gravel (SC-SM), brown, rust, greenish-gray, gray, low plasticity, dry,									
3RARY.GLB 12/8/2		<u></u> −						medium dense to very dense.									
OLORADO LIF		10-	X		11-12-11	23											
2019 YEH COLORADO TEMPLATE.GDT 2019 YEH COLORADO LIBRARY.GLB 12/8/20		- - 15- -	X	-	7-9-7	16		14.0 - 30.5 ft. Sandy lean CLAY with gravel (CL), brown, medium plasticity, moist to wet, very stiff.									
		20-	X		8-15-14	29											
BORING LOG 2019 - SPT CDOT STYLE I-90 MDT TAFT.GPJ		25 — - -															
BORING LC		30-	X	,	21-17-18	35		Bottom of Hole at 30.5 ft									

LABORATORY TEST RESULTS

YEH & ASSOCIATES, INC

Summary of Laboratory Test Results

 Project No:
 219-371
 Project Name:
 MDOT Taft Montana
 Date:
 9/21/2020

	Sample Location	•	Natural	Natural		Gradatio		Α	tterbe	rg		Water			% Swell (+)		CLASSIFIC	CATION
Boring No. (final)	Depth (ft)	Sample Type	Moisture Content (%)	Dry Density (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PL	PI	PH	Soluble Sulfate %	Resistivity ohm.cm	Chloride %	/ Consoli- dation (-)	R-Value	AASHTO	USCS
YA-EB-1	1.33-5	Bulk	2.5	-	32	52	16	NV	NP	NP	_	-	-	-	_	-	A-1-b (0)	SM
YA-EB-1	2	SPT	-	-	_	-	_	-	_	_	10.4	0.009	2050	0.0118	_	-	-	-
YA-EB-3	1.25-5	Bulk	4.4	_	37	44	19	NV	NP	NP	_	-	_	-	_	-	A-1-b (0)	SM
YA-EB-3	2	SPT	_	-	_	-	_	-	_	_	8.8	0.005	2064	0.0151	_	-	-	-
YA-EB-4	0.66-5	Bulk	4.4	-	30	44	26	23	17	6	_	-	_	_	_	-	A-2-4 (0)	SM-SC
YA-EB-4	4	SPT	-	_	_	-	_	-	_	_	8.2	0.001	871	0.0396	_	-	_	-
YA-EB-5	0.79-5	Bulk	3.5	-	35	43	22	NV	NP	NP	_	-	_	_	_	-	A-1-b (0)	SM
YA-EB-8	1.16-5	Bulk	4.9	_	41	47	12	NV	NP	NP	_	-	_	_	-	-	A-1-a (0)	SW-SM
YA-EB-8	2	SPT	-	_	_	-	_	-	_	_	7.0	0.002	1028	0.0369	_	-	_	-
YA-EB-10	1.33-5	Bulk	3.7	-	29	54	17	NV	NP	NP	_	-	_	_	_	-	A-1-b (0)	SM
YA-EB-12	0.66-5	Bulk	5.0	-	42	37	21	NV	NP	NP	_	-	_	_	_	-	A-1-b (0)	GM
YA-EB-12	2	SPT	-	_	_	-	_	-	_	_	8.4	0.002	1023	0.0386	_	-	_	_
YA-EB-13	0.66-5	Bulk	7.0	-	41	35	24	24	18	6	_	-	_	_	_	-	A-1-b (0)	GM-GC
YA-WB-1	0.66-5	Bulk	5.7	_	26	48	26	24	18	6	-	_	_	_	-	-	A-2-4 (0)	SM-SC
YA-WB-1	4	SPT	_	_	_	_	_	_	_	_	8.6	0.001	4548	0.0030	-	-	-	_
YA-WB-2	1.16-5	Bulk	2.6	-	33	51	16	NV	NP	NP	Ī	-	-	_	_	-	A-1-b (0)	SM
YA-WB-2	2	SPT	_	_	_	-	_	_	-	_	10.5	0.012	1783	0.0113	_	_	-	_

Rev 2 - 8/02 Page 1 of 2

YEH & ASSOCIATES, INC

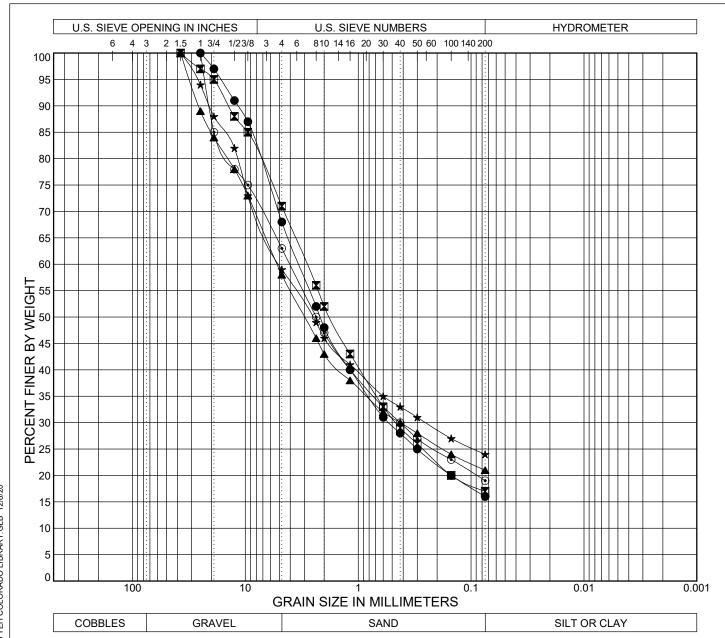
Summary of Laboratory Test Results

 Project No:
 219-371
 Project Name:
 MDOT Taft Montana
 Date:
 9/21/2020

	Sample Location	ī	Natural	Natural		Gradatio		Α	tterbe	rg		Water			% Swell (+)		CLASSIFIC	CATION
Boring No. (final)	Depth (ft)	Sample Type	Moisture Content (%)	Dry Density (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PL	PI	PH	Soluble Sulfate %	Resistivity ohm.cm	Chloride %	/ Consoli- dation (-)	R-Value	AASHTO	USCS
YA-WB-3	1.16-5	Bulk	3.7	-	24	59	17	NV	NP	NP	_	-	-	-	_	=	A-1-b (0)	SM
YA-WB-3	4	SPT	-	-	-	_	_	_	_	_	7.0	0.004	1014	0.0440	_	-	-	-
YA-WB-5	1.16-5	Bulk	4.2	-	31	53	16	NV	NP	NP	_	-		-	_	-	A-1-b (0)	SM
YA-WB-5	4	SPT	-	-	-	_	-	-	_	_	7.3	0.005	2354	0.0138	_	-	-	-
YA-WB-6	1.25-5	Bulk	2.9	-	43	44	13	NV	NP	NP	-	_	_	-	_	_	A-1-a (0)	SM
YA-WB-7	0.4-5	Bulk	3.6	_	31	58	11	NV	NP	NP		-	_	-	_	П	A-1-a (0)	SW-SM
YA-WB-8	1.16-3.5	Bulk	1.7	-	39	51	10	NV	NP	NP		-	_	ı	_		A-1-a (0)	SW-SM
YA-WB-8	2	SPT	-	-	_	_	_	_	_	_	10.4	0.007	2924	0.0090	_	-	_	_
YA-WB-9	1.16-5	Bulk	2.9	-	38	50	12	NV	NP	NP	_	-	_	-	_	-	A-1-a (0)	SW-SM
YA-WB-10	1.25-3.5	Bulk	4.1	-	28	59	13	NV	NP	NP		-	_	ı	_		A-1-b (0)	SM
YA-WB-11	1.16-5	Bulk	4.3	_	32	53	15	NV	NP	NP		-	_	-	_	-	A-1-b (0)	SM
YA-WB-12	1.16-5	Bulk	3.3	ı	26	58	16	NV	NP	NP		-	-	ı	_	1	A-1-b (0)	SM
YA-WB-12	4	SPT	_	ı	_	-	_	ı	ı	_	8.6	0.004	849	0.0478	_	I	_	_
YA-WB-13	1.08-2	Bulk	3.3	-	36	60	4	NV	NP	NP		-	_	-	_	-	A-1-a (0)	SW
YA-WB-13	2-5	Bulk	5.1	_	29	48	23	NV	NP	NP	-	_	_	_	_	_	A-1-b (0)	SM
YA-WB-13	2	SPT	-	_	_	_	_	_	-	_	8.0	0.004	1414	0.0259	_	_	_	_
YA-LP-1	0-5	Bulk	3.5	-	41	36	23	26	18	8	-	-	-	-	-	-	A-2-4 (0)	GC

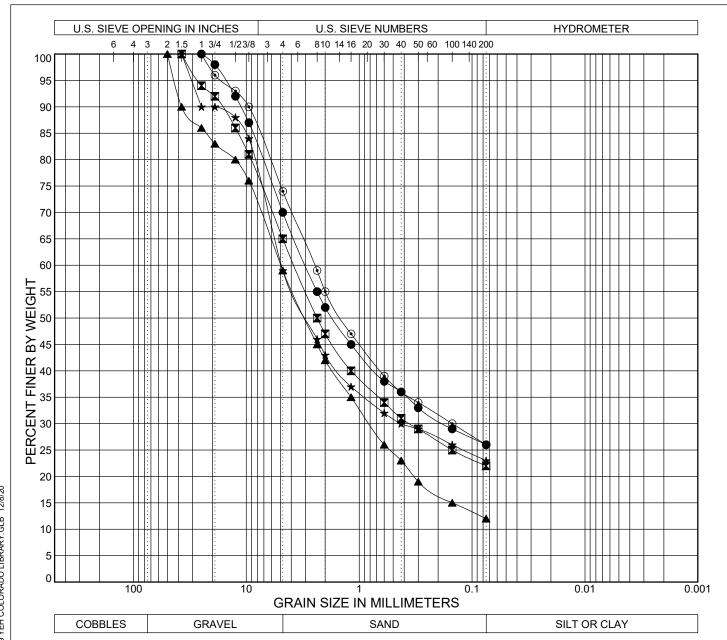
Rev 2 - 8/02 Page 2 of 2

YEH & ASSOCIATES, INC

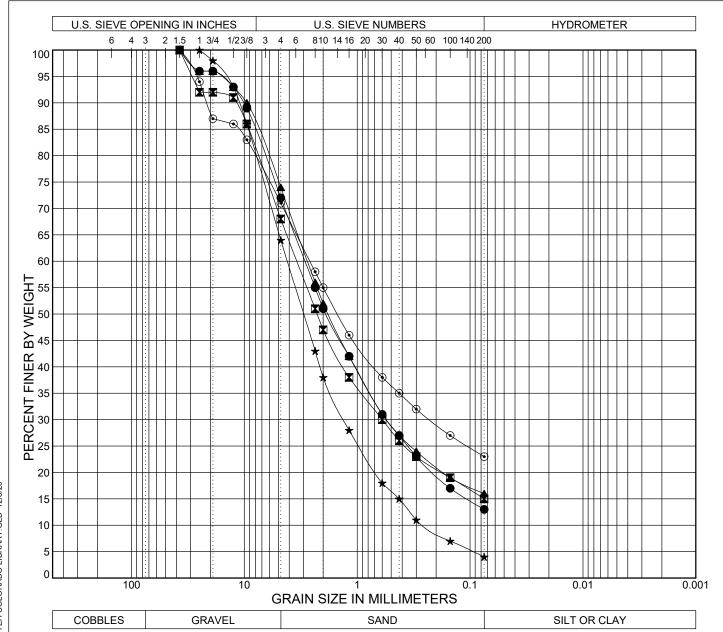

Summary of Laboratory Test Results

Project No: 219-371 Project Name: MDOT Taft Montana Date: 9/21/2020

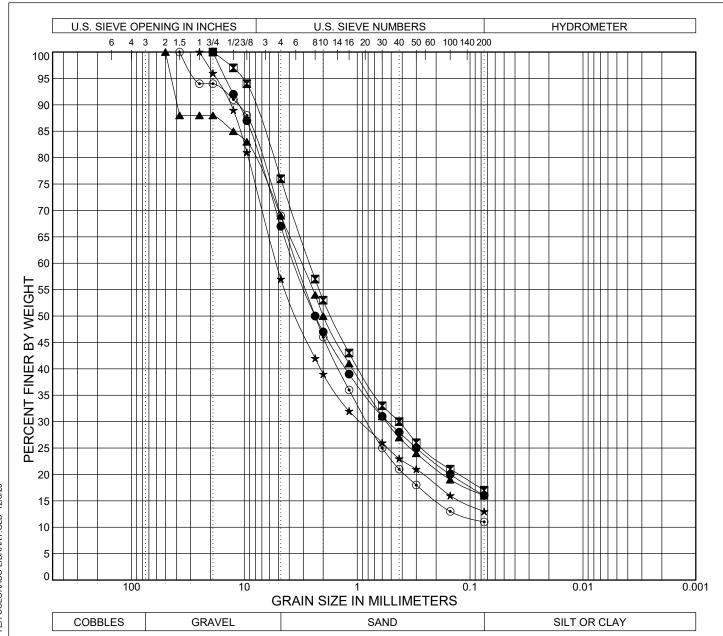
	Sample Location		Natural	Natural	(Gradation	า	Α	tterbe	rg	Modified	Modified	1-Point	3-Point	Resilient	CLASSIFIC	CATION
Boring No. (final)	Depth (ft)	Sample Type	Moisture Content (%)	Dry Density (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	亅	PL	PI	Proctor Max. DD (pcf)	Proctor Opt. Moisture (%)	CBR* (%)	CBR* (%)	Modulus** (psi)	AASHTO	USCS
YA-EB-8, YA-WB-6, YA-WB-7	Upper 5	Combined Bulk									134.9	6.8					
YA-EB-10, YA-WB-2, YA-WB-3	Upper 5	Combined Bulk									134.7	6.7					
YA-EB-4 YA-WB-1	Upper 5	Combined Bulk									137.2	6.5					
YA-EB-4, YA-WB-1	Upper 5	Combined Bulk											59.1				
YA-WB-5	1.16-5	Bulk											34.1				
YA-WB-11	1.16-5	Bulk											41.5				
YA-EB-1, YA-WB-13, YA-WB-12	Upper 5	Combined Bulk												22.0			
YA-EB-8, YA-WB-6, YA-WB-7	Upper 5	Combined Bulk												31.0			
YA-EB-12, YA-EB-13	Upper 5	Combined Bulk												39.0			
YA-WB-8, YA-WB-9	Upper 5	Combined Bulk												40.0			
YA-EB-8, YA-WB-6, YA-WB-7	Upper 5	Combined Bulk													21,791		
YA-EB-10, YA-WB-2, YA-WB-3	Upper 5	Combined Bulk													22,701		


^{*}CBR Values reported were for samples compacted to 95% of maximum dry density at optimum moisture content, at 0.1 inch penetration depth ** Resilient modulus testing was performed on samples compacted to 95% of maximum dry density at 2% above optimum moisture content

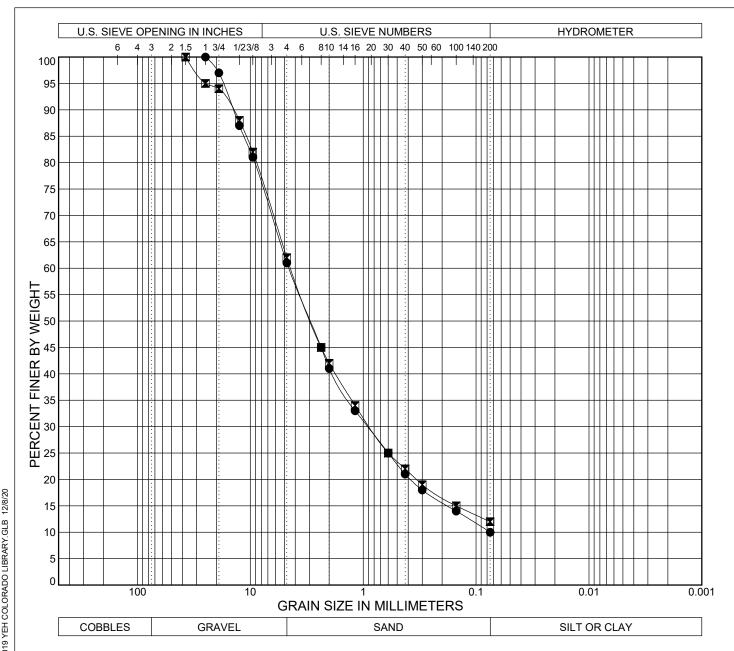
Rev 2 - 8/02 Page 2 of 2


l	BOREHOLE	DEPTH	AASHTO	USCS						%Fi	nes
		(ft)	Classification	Classification	LL	PL	PI	%Gravel	%Sand	%Silt	%Clay
•	YA-EB-1	3.0	A-1-b (0)	SM	NV	NP	NP	32.0	52.0	16	6.0
	YA-EB-10	2.0	A-1-b (0)	SM	NV	NP	NP	29.0	54.0	17	'.0
A	YA-EB-12	3.0	A-1-b (0)	GM	NV	NP	NP	42.0	37.0	21	.0
*	YA-EB-13	3.0	A-1-b (0)	GC-GM	24	18	6	41.0	35.0	24	l.0
•	YA-EB-3	3.0	A-1-b (0)	SM	NV	NP	NP	37.0	44.0	19	0.0

	Yeh and A	ASSOCIAT	es, Inc.	SIEVE ANALYSIS
Project No. Report By: Checked By:	219-371	Date: Yeh Lab	12-08-2020 : Denver	I-90 - Taft West


	BOREHOLE	DEPTH	AASHTO	USCS						%Fi	nes
		(ft)	Classification	Classification	LL	PL	PI	%Gravel	%Sand	%Silt	%Clay
•	YA-EB-4	2.0	A-2-4 (0)	SC-SM	23	17	6	30.0	44.0	26	6.0
	YA-EB-5	2.0	A-1-b (0)	SM	NV	NP	NP	35.0	43.0	22	2.0
4	YA-EB-8	3.0	A-1-a (0)	SW-SM	NV	NP	NP	41.0	47.0	12	2.0
*	YA-LP-1	2.0	A-2-4 (0)	GC	26	18	8	41.0	36.0	23	3.0
•	YA-WB-1	2.0	A-2-4 (0)	SC-SM	24	18	6	26.0	48.0	26	6.0

	Yeh and A			SIEVE ANALYSIS
Project No. Report By: Checked By:	219-371	Date: Yeh Lab	12-08-2020 : Denver	I-90 - Taft West


ı	BOREHOLE	DEPTH	AASHTO	USCS						%Fi	nes
		(ft)	Classification	Classification	LL	PL	PI	%Gravel	%Sand	%Silt	%Clay
•	YA-WB-10	2.0	A-1-b (0)	SM	NV	NP	NP	28.0	59.0	13	3.0
	YA-WB-11	2.0	A-1-a (0)	SM	NV	NP	NP	32.0	53.0	15	5.0
4	YA-WB-12	2.0	A-1-b (0)	SM	NV	NP	NP	26.0	58.0	16	6.0
*	YA-WB-13	1.7	A-1-a (0)	SW	NV	NP	NP	36.0	60.0	4	.0
•	YA-WB-13	3.0	A-1-b (0)	SM	NV	NP	NP	29.0	48.0	23	3.0

	Yeh and A	SSOCIAT	SIEVE ANALYSIS	
Project No. Report By: Checked By:	219-371	Date: Yeh Lab	12-08-2020 : Denver	I-90 - Taft West

E	BOREHOLE	DEPTH	AASHTO	USCS						%Fi	nes
		(ft)	Classification	Classification	LL	PL	PI	%Gravel	%Sand	%Silt	%Clay
•	YA-WB-2	3.0	A-1-b (0)	SM	NV	NP	NP	33.0	51.0	16	6.0
X	YA-WB-3	2.0	A-1-b (0)	SM	NV	NP	NP	24.0	59.0	17	'.0
A	YA-WB-5	2.0	A-1-b (0)	SM	NV	NP	NP	31.0	53.0	16	6.0
*	YA-WB-6	2.0	A-1-a (0)	SM	NV	NP	NP	43.0	44.0	13	3.0
•	YA-WB-7	2.0	A-1-a (0)	SP-SM	NV	NP	NP	31.0	58.0	11	.0

Yeh and Geotechnical ·	Associates, Inc. Geological · Construction Services	SIEVE ANALYSIS
Project No. 219-372 Report By: Checked By:	Date: 12-08-2020 Yeh Lab: Denver	I-90 - Taft West

ם :	В	OREHOLE	DEPTH	AASHTO	USCS						%Fi	nes
¥			(ft)	Classification	Classification	LL	PL	PI	%Gravel	%Sand	%Silt	%Clay
EMF	•	YA-WB-8	3.0	A-1-a (0)	SW-SM	NV	NP	NP	39.0	51.0	10	0.0
OO	X	YA-WB-9	2.0	A-1-a (0)	SP-SM	NV	NP	NP	38.0	50.0	12	2.0
ל ב												
H CC												
9 YE												

G	Yeh and A	SSOCIAT	SIEVE ANALYSIS	
Project No. Report By: Checked By:	219-371	Date: Yeh Lab	12-08-2020 : Denver	I-90 - Taft West

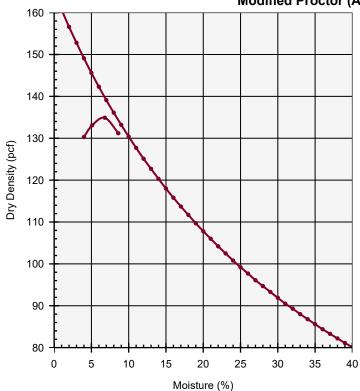
Client: Samantha Sherwood Yeh and Associates 2000 N Clay St Unit 200

Denver, CO 80211

Yeh and Associates Lab Testing Services

Report Date: Oct 3, 2020 Work Order No.: 20-1305.SoilSampling.0001; ver: 1

Work Order Date: Sep 22, 2020 Reviewed by: Evan Kuhn


Soil/Aggregate Laboratory Summary

Sample No.: 1

Dropped Off By: Client *Sampling may not be in accordance with reported method.

ASTM D75 / AASHTO T2 / CDOT CP30 Sampling Method: Material Description: Light brown, silty SAND with gravel Sample Location: Combined WB-6, WB-7, EB-8

Modified Proctor (AASHTO T180)

Method	Preparation	Hammer
Method D	Moist Preparation	Manual

		Oversize	Corrected
Maximum Dry Density (pcf)	Optimum Moisture (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)
134.9	6.8	137.0	6.3

Oversize Sieve: 3/4 in Coarse Fraction (%): 8 Fine Fraction (%):

Coarse Specific Gravity: Measured 2.64

Coarse Absorption (%): 1.22

Fine Specific Gravity: Estimated 2.65

Results apply only to the specific items and locations referenced and at the time of testing, observations or special inspections. Unless noted otherwise, samples were received in adequate condition. This report should not be reproduced, except in full, without the written permission of GROUND Engineering Consultants, Inc.

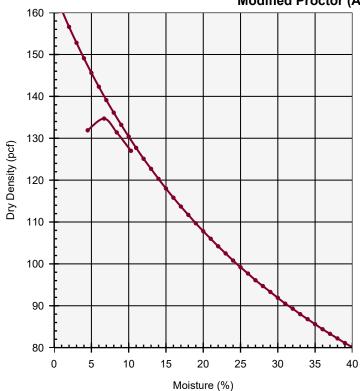
Client: Samantha Sherwood Yeh and Associates 2000 N Clay St Unit 200

Denver, CO 80211

Yeh and Associates Lab Testing Services

Report Date: Oct 3, 2020 Work Order No.: 20-1305.SoilSampling.0001; ver: 1

Work Order Date: Sep 22, 2020 Reviewed by: Evan Kuhn


Soil/Aggregate Laboratory Summary

2 Sample No.:

Dropped Off By: Client *Sampling may not be in accordance with reported method.

ASTM D75 / AASHTO T2 / CDOT CP30 Sampling Method: Material Description: Light brown, silty SAND with gravel Sample Location: Combined WB-2, WB-3, EB-10

Modified Proctor (AASHTO T180)

Method	Preparation	Hammer
Method D	Moist Preparation	Manual

		Oversize	Corrected
Maximum Dry Density (pcf)	Optimum Moisture (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)
134.7	6.7	136.0	6.3

Oversize Sieve: 3/4 in Coarse Fraction (%): 6 Fine Fraction (%):

Coarse Specific Gravity: Measured 2.67

Coarse Absorption (%): 0.86

Fine Specific Gravity: Estimated 2.65

Results apply only to the specific items and locations referenced and at the time of testing, observations or special inspections. Unless noted otherwise, samples were received in adequate condition. This report should not be reproduced, except in full, without the written permission of GROUND Engineering Consultants, Inc.

Page 3 of 9

Client: Samantha Sherwood Yeh and Associates 2000 N Clay St Unit 200

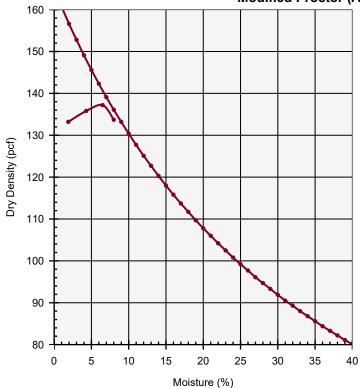
Denver, CO 80211

Yeh and Associates Lab Testing Services

Report Date: Oct 3, 2020 Work Order No.: 20-1305.SoilSampling.0001; ver: 1

Work Order Date: Sep 22, 2020 Reviewed by: Evan Kuhn

Soil/Aggregate Laboratory Summary


3 Sample No.:

Dropped Off By: Client *Sampling may not be in accordance with reported method.

ASTM D75 / AASHTO T2 / CDOT CP30 Sampling Method: Material Description: Pale brown, silty SAND with gravel

Sample Location: Combined EB-4 and WB-1

Modified Proctor (AASHTO T180)

Method	Preparation	Hammer	
Method D	Moist Preparation	Manual	

		Oversize Corrected				
Maximum Dry Density (pcf)	Optimum Moisture (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)			
137.2	6.5	139.0	6.0			

Oversize Sieve: 3/4 in Coarse Fraction (%): 10 Fine Fraction (%):

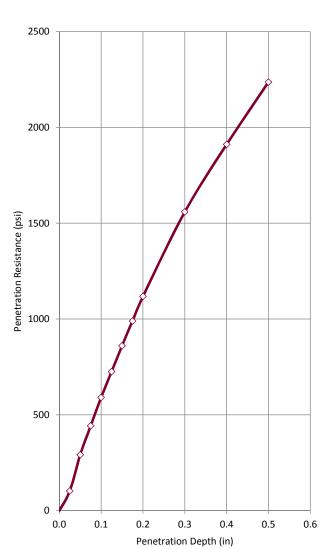
Coarse Specific Gravity: Measured 2.66

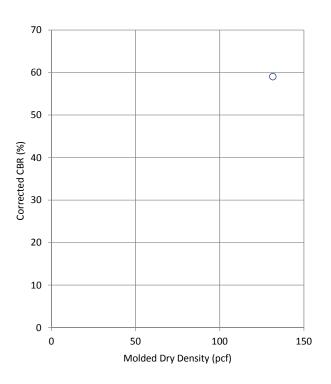
Coarse Absorption (%): 1.08

Fine Specific Gravity: Estimated 2.65

Results apply only to the specific items and locations referenced and at the time of testing, observations or special inspections. Unless noted otherwise, samples were received in adequate condition. This report should not be reproduced, except in full, without the written permission of GROUND Engineering Consultants, Inc.

Page 4 of 9




Client: Yeh and Associates, Inc

Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (Single Point)

Corrected CBR at 0.1 in from Graph						
Relative Comp. (%)	Dry Density (pcf)	CBR (%)				

Proctor Method: ASTM - D1557

Max. Dry Density (pcf): 137.2

Opt. Moisture Content (%): 6.5

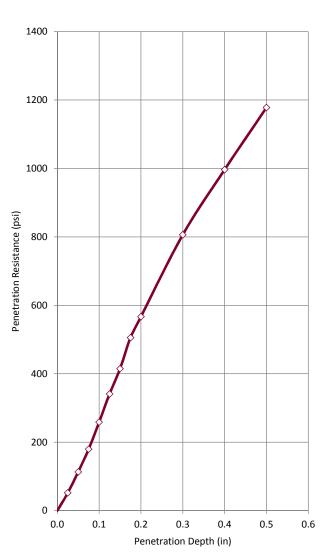
	Molded Properties			Soaked Properties					
	Relative	Dry Density	Moisture	Dry Density	Moisture			Correcte	d CBR (%)
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
10									
2 🛇	95.9	131.6	6.7	132.5	8.1	10	0.1	59.1	74.5
3 Δ									

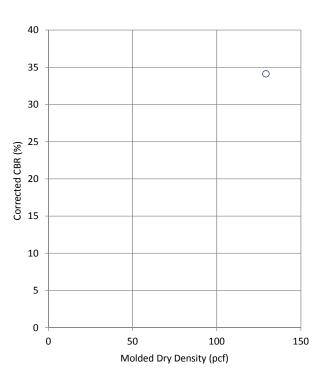
 Sample:
 Combined EB-4 and WB-1
 Classification: 3C-SM / A-2-4(0 < 3/4 in (%):</th>
 92-96

 Description:
 Silty sand with gravel
 Liquid Limit:
 17-18
 < No. 4 (%):</th>
 70-74

 Sample ID:
 Soil8894
 Plasticity Index:
 6
 < No. 200 (%):</th>
 26.0

Results apply only to the specific items and locations referenced and at the time of testing. Interpretation should be performed by qualified personnel. This report should not be reproduced, except in full, without the written permission of GROUND Engineering Consultants, Inc.




Client: Yeh and Associates, Inc

Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (Single Point)

Corrected CBR at 0.1 in from Graph					
Relative	Dry Density				
Comp. (%)	(pcf)	CBR (%)			

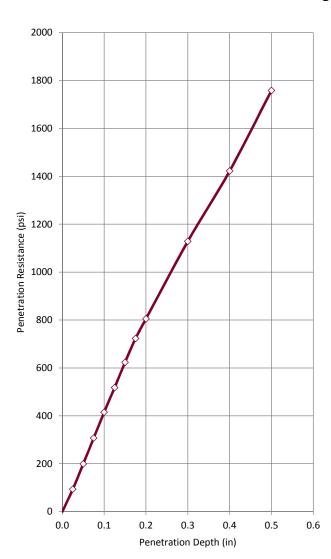
Proctor Method: ASTM - D1557

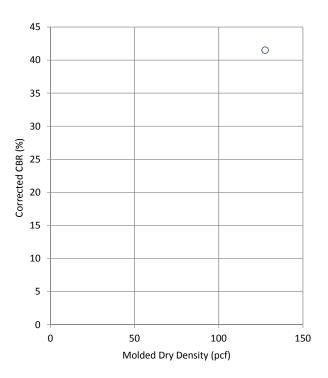
Max. Dry Density (pcf): 134.7

Opt. Moisture Content (%): 6.7

	Molded Properties			Soaked Properties					
	Relative	Dry Density	Moisture	Dry Density	Moisture			Corrected	d CBR (%)
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
10									
2 🛇	96.0	129.3	6.6	130.3	8.2	10	-0.1	34.1	41.7
3 Δ									

Sample: WB-5 Classification: < 3/4 in (%): 96 SM / A-1-b Silty sand and gravel Description: Liquid Limit: NV < No. 4 (%): 69 Soil8898 < No. 200 (%): Sample ID: Plasticity Index: NP 16.0


Results apply only to the specific items and locations referenced and at the time of testing. Interpretation should be performed by qualified personnel. This report should not be reproduced, except in full, without the written permission of GROUND Engineering Consultants, Inc.



Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (Single Point)

Corrected	Corrected CBR at 0.1 in from Graph									
Relative	Dry Density									
Comp. (%)	(pcf)	CBR (%)								

Proctor Method: ASTM - D1557

Max. Dry Density (pcf): 134.7

Opt. Moisture Content (%): 6.7

SM / A-1-b

< 3/4 in (%):

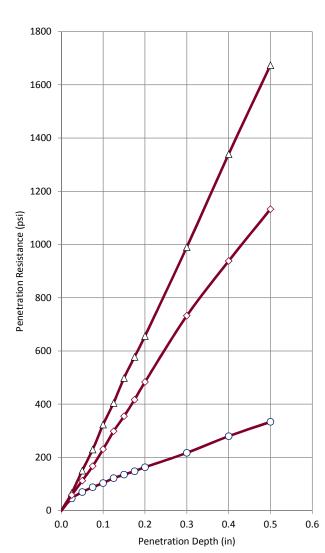
96

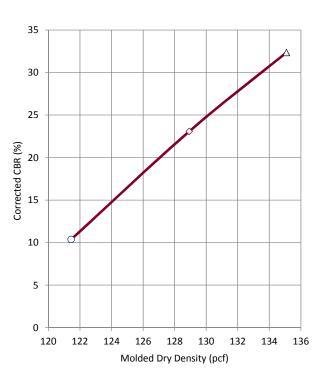
Classification:

	Molded Properties		Soaked P	roperties					
	Relative	Dry Density	Moisture	Dry Density Moisture				Correcte	d CBR (%)
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
10									
2 ◊	94.7	127.6	6.5	128.5	8.6	10	0.2	41.5	53.7
3 Δ									

Sample: WB-11

 Description:
 Silty sand and gravel
 Liquid Limit:
 NV
 < No. 4 (%):</th>
 68


 Sample ID:
 Soil8899
 Plasticity Index:
 NP
 < No. 200 (%):</td>
 15.0



Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (ASTM D1883)

Corrected	CBR at 0.1 in fr	om Graph
Relative Comp. (%)	Dry Density (pcf)	CBR (%)
100	134.7	32
95	128.0	22
90	121.2	10

Proctor Method: D1557

Max. Dry Density (pcf): 134.7

Opt. Moisture Content (%): 6.7

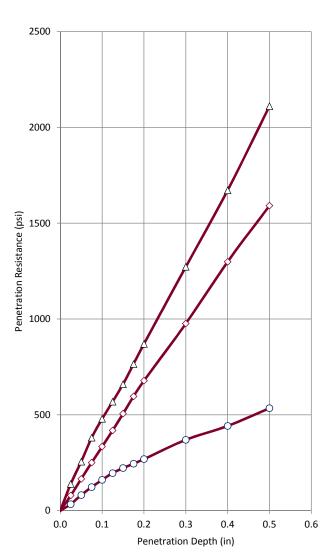
	Molded Properties			Soaked P	roperties				
	Relative Dry Density Moisture		Dry Density	Moisture	Moisture		Corrected CBR (%)		
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
1 0	90.2	121.4	6.9	125.7	7.8	10	-0.1	10.4	10.9
2 🛇	95.7	128.9	6.9	131.2	7.2	10	0.0	23.1	32.2
3 Δ	100.3	135.1	6.9	136.1	7.2	10	-0.1	32.4	43.7

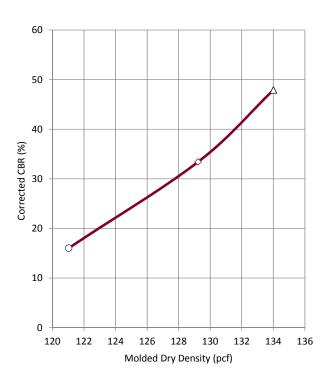
Sample: Combined EB-1, WB-13 and WB-12

Description: Silty sand Sample ID: Soil8897

 Classification:
 SW to SM
 < 3/4 in (%):</td>
 43929

 Liquid Limit:
 NV
 < No. 4 (%):</td>
 64-74


 Plasticity Index:
 NP
 < No. 200 (%):</td>
 4-16



Project No.: 20-1305

Yeh and Associates I-90 Taft West

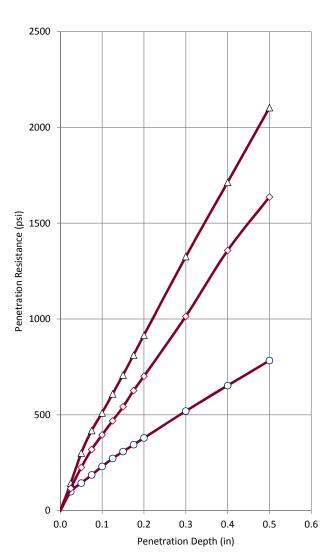
California Bearing Ratio (ASTM D1883)

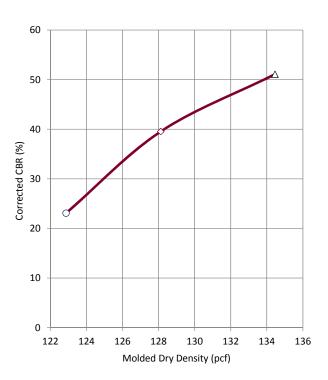
Corrected	CBR at 0.1 in fr	om Graph
Relative Comp. (%)	Dry Density (pcf)	CBR (%)
100	134.9	51
95	128.2	31
90	121.4	17

Proctor Method: D1557
Max. Dry Density (pcf): 134.9
Opt. Moisture Content (%): 6.8

	Molded Properties			Soaked P	roperties				
	Relative Dry Density Moisture		Dry Density	Moisture			Corrected CBR (%)		
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
10	89.7	121.0	7.0	126.7	8.6	10	0.0	16.0	17.9
2 ◊	95.8	129.2	7.0	130.5	7.6	10	-0.2	33.4	45.2
3 Δ	99.3	134.0	7.0	135.3	7.3	10	-0.2	47.9	58.0

Sample: Combined WB-6, WB-7, EB-8


Description: Silty sands Sample ID: Soil8892



Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (ASTM D1883)

Corrected CBR at 0.1 in from Graph									
Relative Comp. (%)	Dry Density (pcf)	CBR (%)							
100	134.7	51							
95	128.0	39							
90	121.2	17							

Proctor Method: D1557

Max. Dry Density (pcf): 134.7

Opt. Moisture Content (%): 6.7

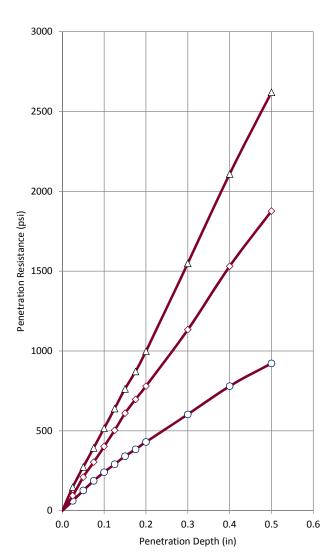
	Molded Properties			Soaked P	roperties				
	Relative Dry Density Moisture		Dry Density	Moisture			Corrected CBR (%)		
Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
10	91.2	122.9	6.9	125.9	9.2	10	0.0	23.1	25.3
2 ◊	95.1	128.1	6.9	130.8	8.5	10	0.3	39.5	46.8
3 Δ	99.8	134.5	6.7	138.1	7.2	10	0.0	51.1	61.0

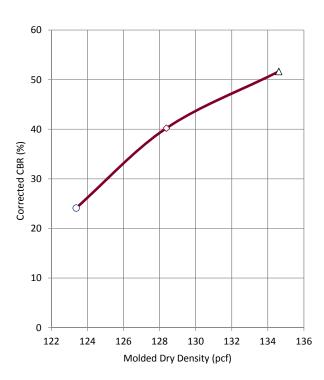
Sample: Combined EB-12 and EB-13

Description: Silty sand Sample ID: Soil8895

 Classification:
 GM-GC / A-1-b < 3/4 in (%):</td>
 4-8

 Liquid Limit:
 NV to 24
 < No. 4 (%):</td>
 58-59


 Plasticity Index:
 NP to 6
 < No. 200 (%):</td>
 21-24



Project No.: 20-1305

Yeh and Associates I-90 Taft West

California Bearing Ratio (ASTM D1883)

	Corrected CBR at 0.1 in from Graph									
	Relative Comp. (%)	Dry Density (pcf)	CBR (%)							
ĺ	100	134.9	52							
ĺ	95	128.2	40							
ĺ	90	121.4	16							

Proctor Method: D1557

Max. Dry Density (pcf): 134.9

Opt. Moisture Content (%): 6.8

ı		Molded Properties			Soaked P	roperties				
ı		Relative Dry Density Moisture		Dry Density	Moisture			Corrected CBR (%)		
L	Specimen	Comp. (%)	(pcf)	Content (%)	(pcf)	Content (%)	Surcharge (lb)	Swell (%)	0.1 in	0.2 in
	1 0	91.5	123.4	6.5	125.0	7.7	10	-0.1	24.1	28.7
	2 🔷	95.2	128.4	6.5	130.6	6.6	10	0.0	40.2	52.0
I	3 Δ	99.8	134.6	6.5	135.4	6.8	10	0.0	51.6	66.6

Sample: Combined WB-8 and WB-9

Description: Silty sand Sample ID: Soil8896

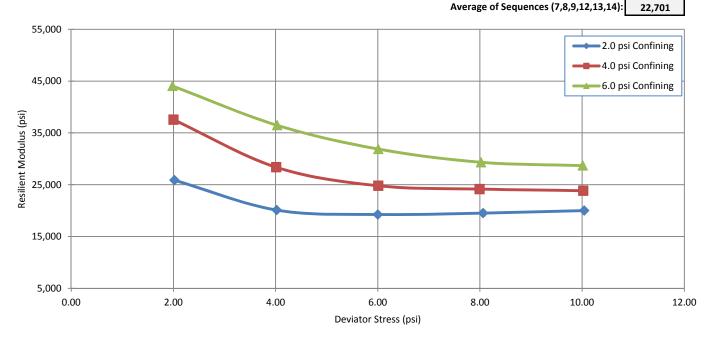
 Classification:
 SW-SM
 < 3/4 in (%):</td>
 4-8

 Liquid Limit:
 NV
 < No. 4 (%):</td>
 61-62

 Plasticity Index:
 NP
 < No. 200 (%):</td>
 10-12

 Project No.:
 20-1305

 Test Date:
 9/25/20


Yeh Laboratory Testing Services

Resilient Modulus of Soils and Aggregates AASHTO T-307

Sample Location: I-90 Taft West; combined WB-2, WB-3 and EB-10 Sample ID#: Soil 8893 Liquid Limit: Description: Silty sands NV Remold Parameters: NP 95% of Max Dry Density @ +2% of optimum moisture Plasticity Index: Remolded Height (in): 8.085 < No. 200 (%): 16-17 Remolded Diameter (in): 4.002 Classification: A-1-b / SM Moisture Content at Remold (%): 8.7 Proctor Type: Modified 128.2 Remolded Dry Density (pcf): Max Dry Density (pcf): 134.7 Moisture Content after test (%): 8.5 Optimum Moisture (%): 6.7

Testing Procedure: AASHTO T 307 Subgrade Soils

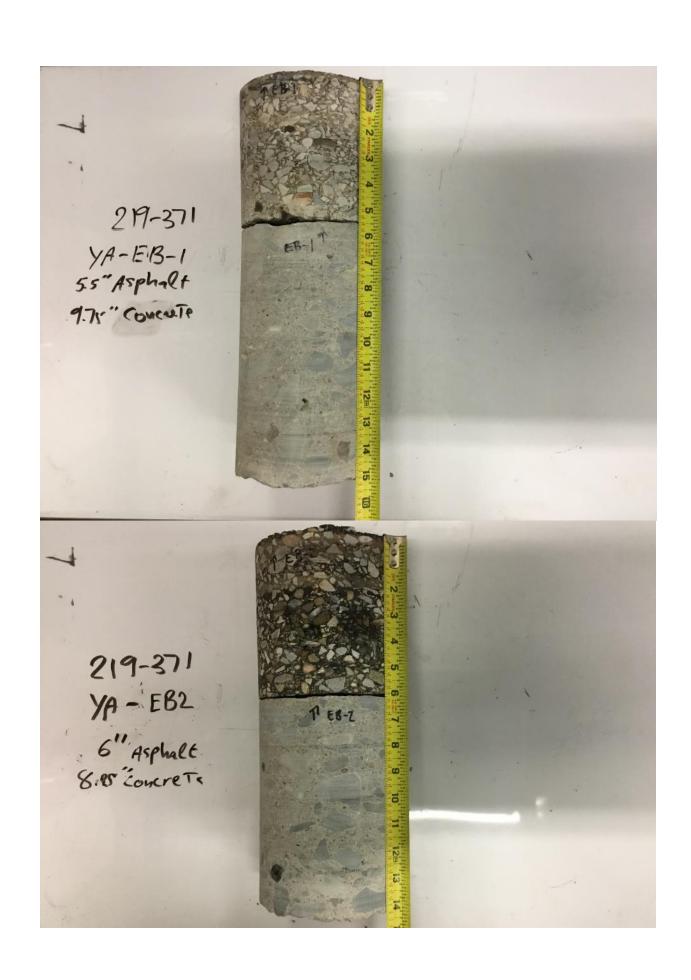
Test	Confining	Maximum Deviator Stress		Applied Contact	Applied	Recov	erable Deforr	nation	Measured Resilient	Resilient
Sequence	Pressure	Specified	Applied	Stress	Cyclic Stress	LVDT #1	LVDT #2	Average	Strain	Modulus
	(psi)	(psi)	(psi)	(psi)	(psi)	(mils)	(mils)	(mils)	(%)	(psi)
Conditioning	6.0	4.0	4.06	0.39	3.67	0.83	0.84	0.84	0.010	-
1	6.0	2.0	1.98	0.21	1.77	0.31	0.34	0.33	0.004	44,057
2	6.0	4.0	4.03	0.41	3.62	0.79	0.80	0.80	0.010	36,464
3	6.0	6.0	6.01	0.59	5.42	1.36	1.36	1.36	0.017	31,879
4	6.0	8.0	8.02	0.79	7.23	1.98	1.97	1.98	0.025	29,329
5	6.0	10.0	10.01	1.00	9.01	2.51	2.52	2.52	0.031	28,689
6	4.0	2.0	2.00	0.20	1.80	0.40	0.37	0.39	0.005	37,554
7	4.0	4.0	4.01	0.41	3.60	1.05	0.98	1.02	0.013	28,377
8	4.0	6.0	6.01	0.63	5.38	1.78	1.69	1.74	0.022	24,803
9	4.0	8.0	7.99	0.80	7.20	2.44	2.33	2.39	0.030	24,157
10	4.0	10.0	10.02	0.99	9.03	3.08	2.98	3.03	0.038	23,841
11	2.0	2.0	2.02	0.22	1.80	0.57	0.54	0.56	0.007	25,875
12	2.0	4.0	4.02	0.40	3.62	1.51	1.37	1.44	0.018	20,100
13	2.0	6.0	6.00	0.60	5.41	2.35	2.15	2.25	0.028	19,252
14	2.0	8.0	8.06	0.81	7.25	3.08	2.86	2.97	0.037	19,520
15	2.0	10.0	10.04	1.03	9.01	3.70	3.51	3.61	0.045	20,007

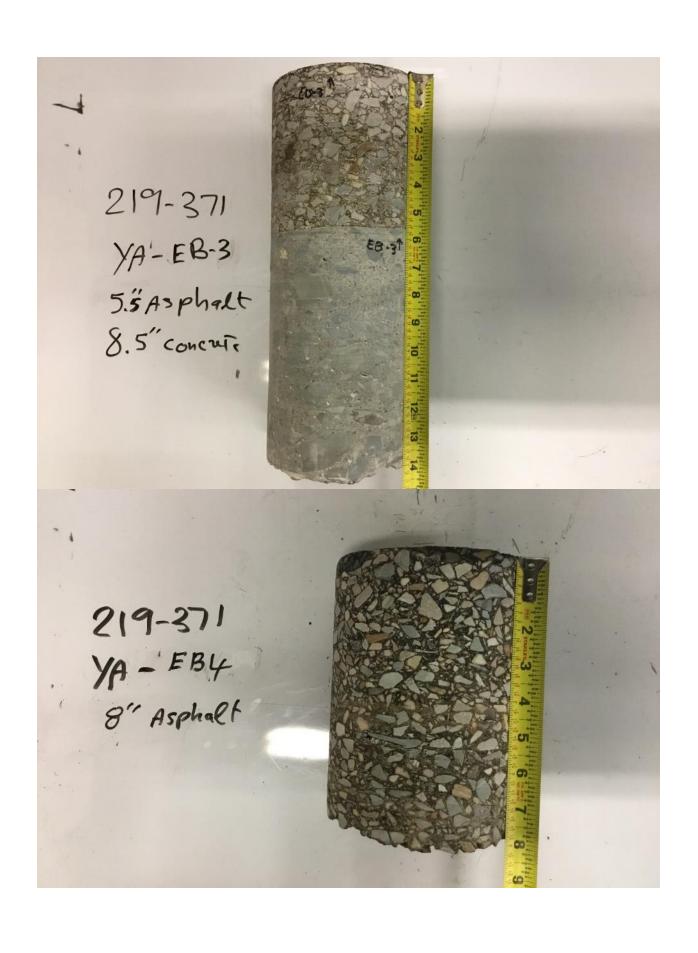
 Project No.:
 20-1305

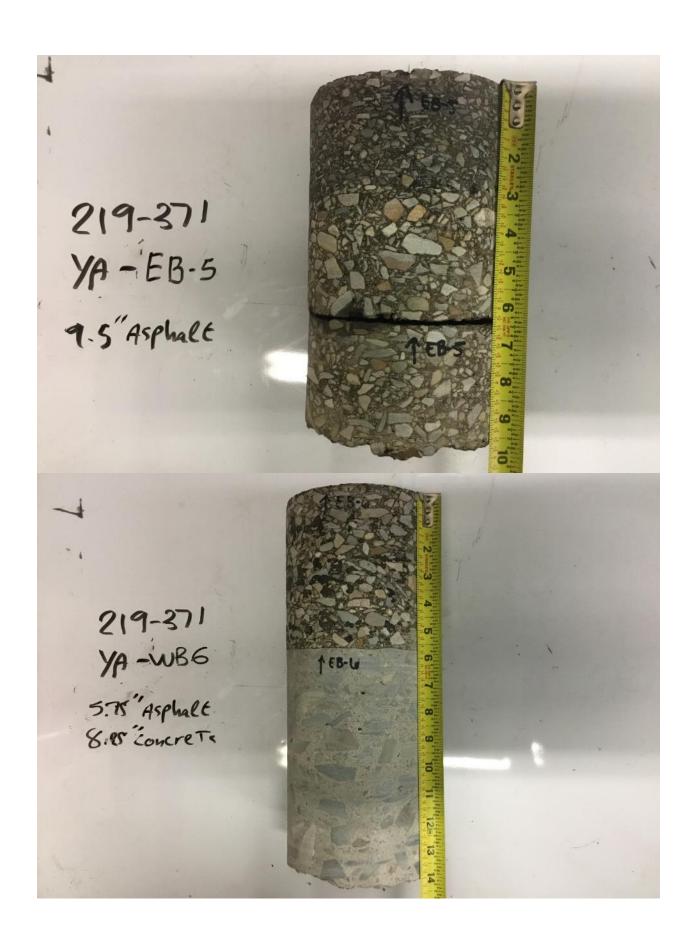
 Test Date:
 9/25/20

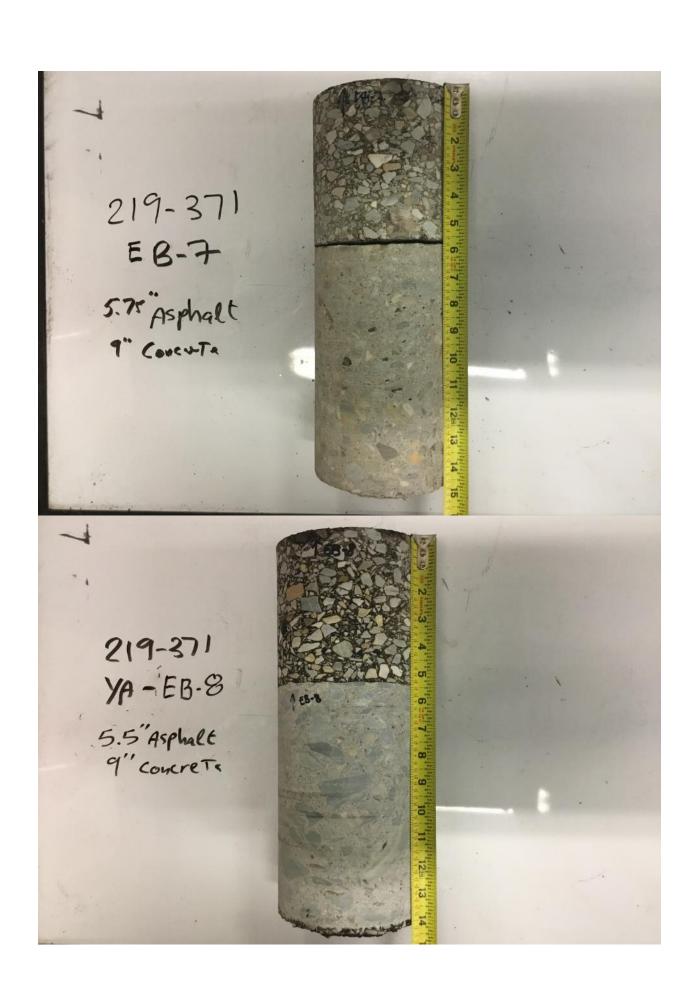
Yeh Laboratory Testing Services

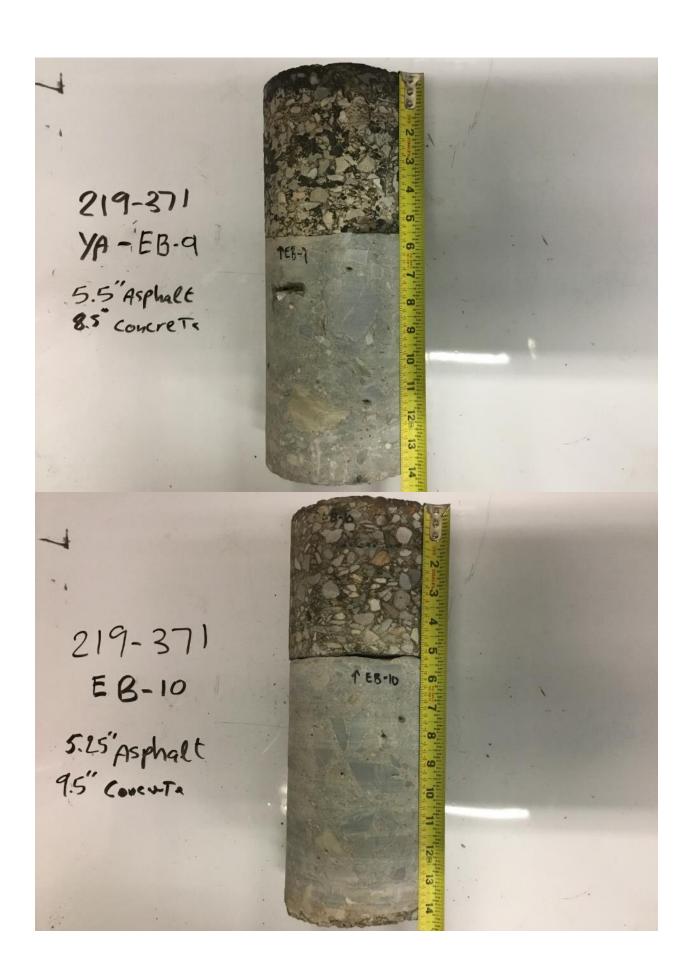
Resilient Modulus of Soils and Aggregates AASHTO T-307

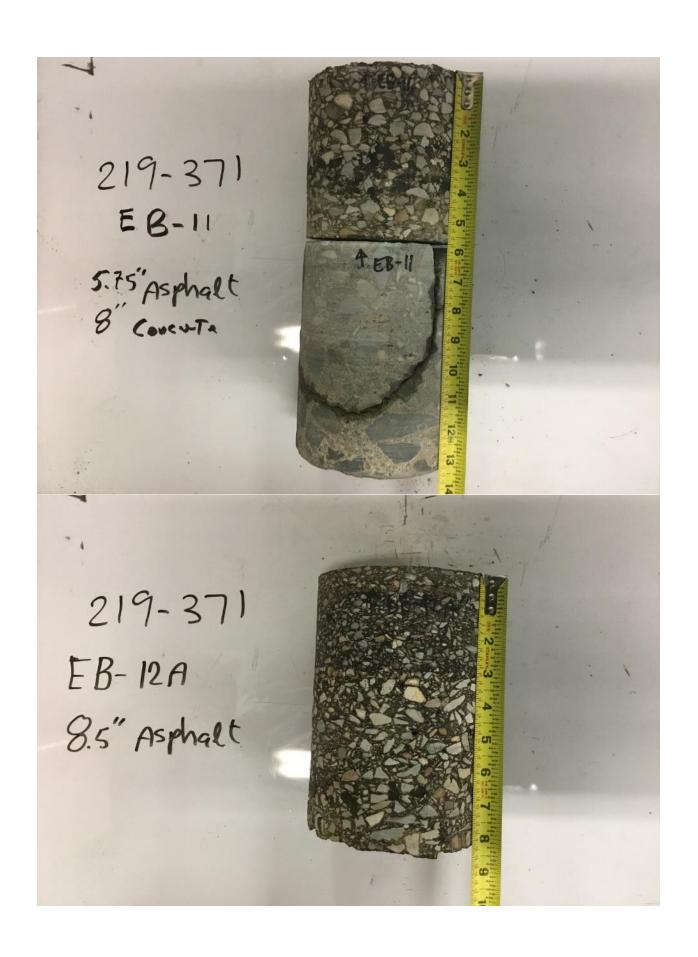

Sample Location: I-90 Taft West; combined WB-6, WB-7 and EB-8 Sample ID#: Soil 8892 Liquid Limit: Description: Silty sands NV Remold Parameters: NP 95% of Max Dry Density @ +2% of optimum moisture Plasticity Index: Remolded Height (in): 8.090 < No. 200 (%): 11-13 Remolded Diameter (in): 4.001 Classification: A-1-b Moisture Content at Remold (%): 9.1 Modified Proctor Type: 128.2 Remolded Dry Density (pcf): Max Dry Density (pcf): 134.9 Moisture Content after test (%): 9.0 Optimum Moisture (%): 6.8

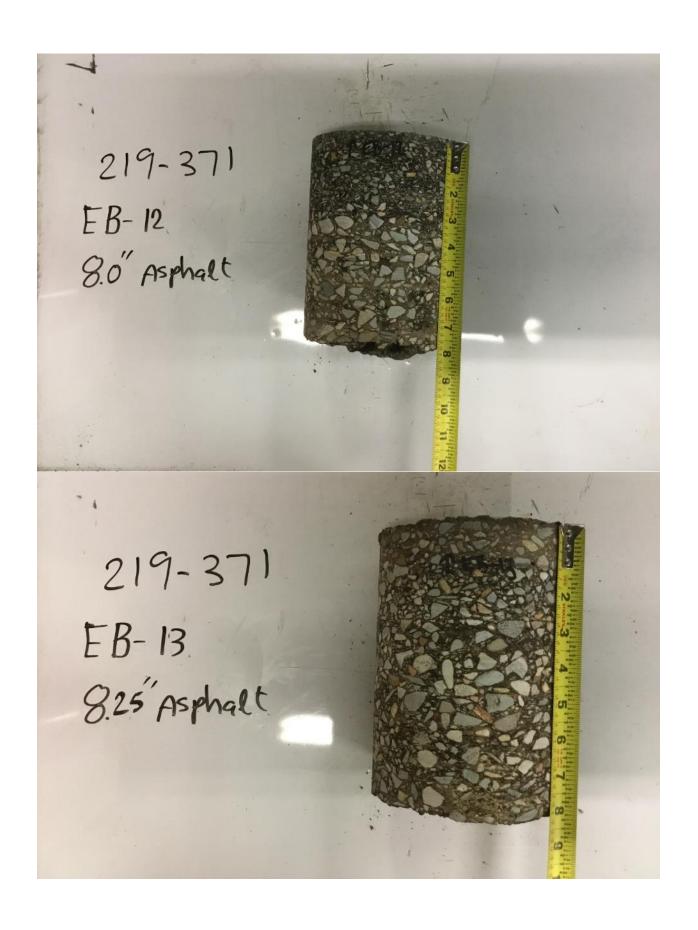

Testing Procedure: AASHTO T 307 Subgrade Soils

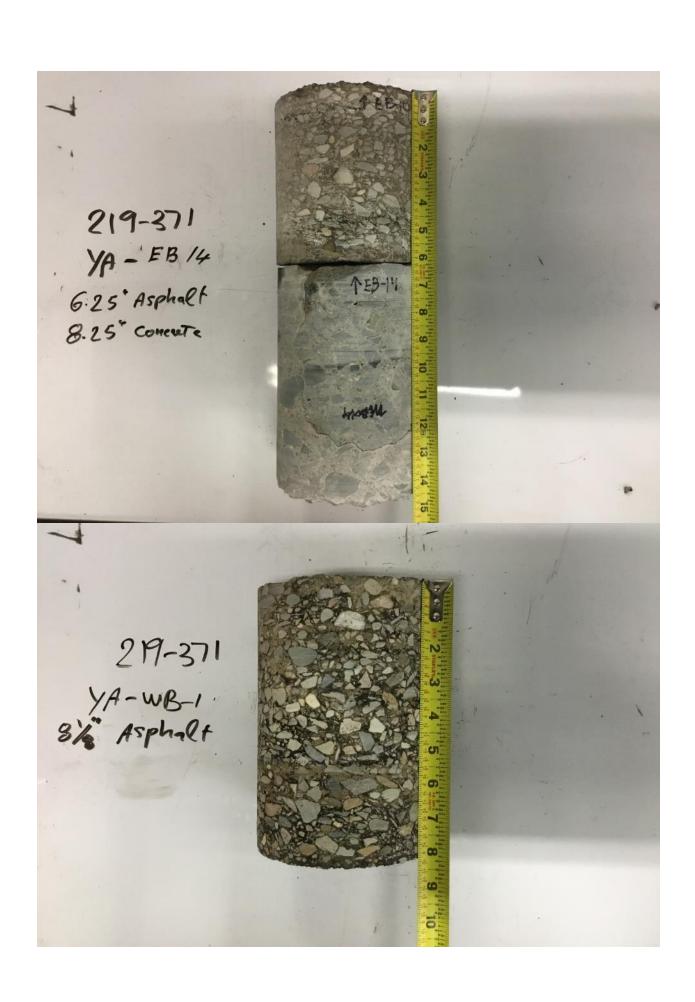

Test	Confining		Deviator ess	Applied Contact	Applied	Recoverable Deformation			Measured Resilient	Resilient	
Sequence	Pressure	Specified	Applied	Stress	Cyclic Stress	LVDT #1	LVDT #2	Average	Strain	Modulus	
	(psi)	(psi)	(psi)	(psi)	(psi)	(mils)	(mils)	(mils)	(%)	(psi)	
Conditioning	6.0	4.0	4.08	0.39	3.69	0.89	0.92	0.91	0.011	ı	
1	6.0	2.0	1.99	0.19	1.81	0.33	0.34	0.34	0.004	42,863	
2	6.0	4.0	4.02	0.40	3.62	0.85	0.86	0.86	0.011	33,854	
3	6.0	6.0	6.02	0.62	5.40	1.44	1.48	1.46	0.018	29,571	
4	6.0	8.0	8.01	0.81	7.20	2.05	2.06	2.06	0.026	28,029	
5	6.0	10.0	10.05	1.00	9.04	2.58	2.61	2.60	0.032	27,880	
6	4.0	2.0	2.01	0.21	1.79	0.44	0.44	0.44	0.005	32,628	
7	4.0	4.0	4.02	0.41	3.61	1.14	1.14	1.14	0.014	25,406	
8	4.0	6.0	6.01	0.60	5.41	1.83	1.83	1.83	0.023	23,663	
9	4.0	8.0	8.04	0.79	7.25	2.49	2.46	2.48	0.031	23,481	
10	4.0	10.0	10.03	1.01	9.01	3.06	3.08	3.07	0.038	23,467	
11	2.0	2.0	2.01	0.21	1.80	0.60	0.57	0.59	0.007	24,848	
12	2.0	4.0	4.02	0.39	3.63	1.50	1.46	1.48	0.019	19,589	
13	2.0	6.0	6.04	0.60	5.44	2.28	2.24	2.26	0.028	19,228	
14	2.0	8.0	8.01	0.83	7.18	2.98	2.96	2.97	0.037	19,378	
15	2.0	10.0	10.01	1.03	8.98	3.58	3.61	3.60	0.045	20,002	
Average of Sequences (7,8,9,12,13,14): 21,											

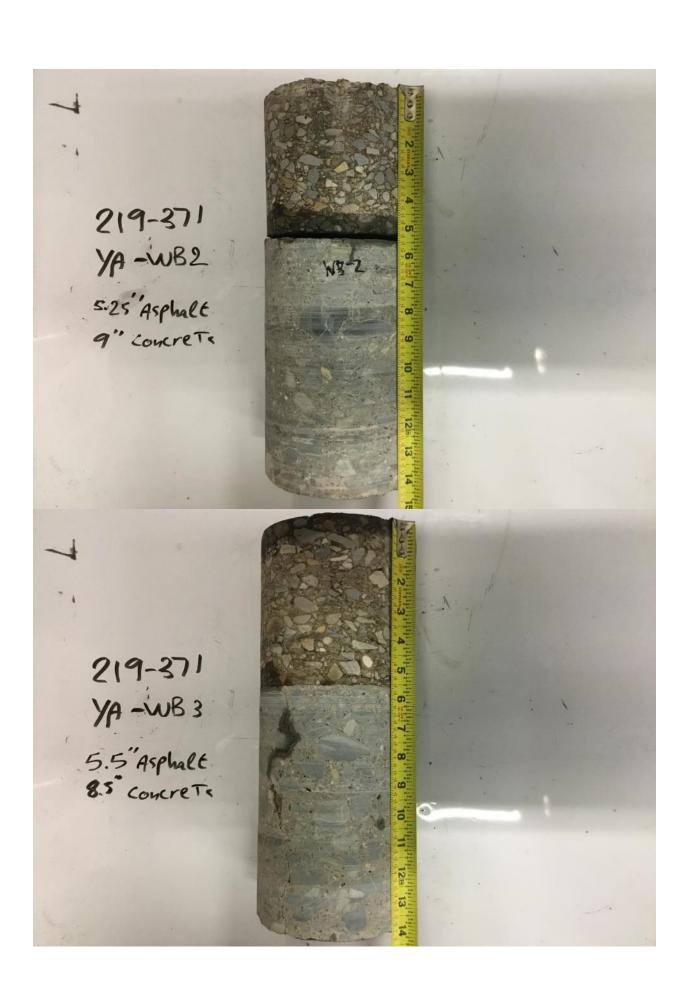

45,000 2.0 psi Confining -4.0 psi Confining 6.0 psi Confining 35,000 Resilient Modulus (psi) 25,000 15,000 5,000 0.00 2.00 4.00 6.00 8.00 10.00 12.00 Deviator Stress (psi)

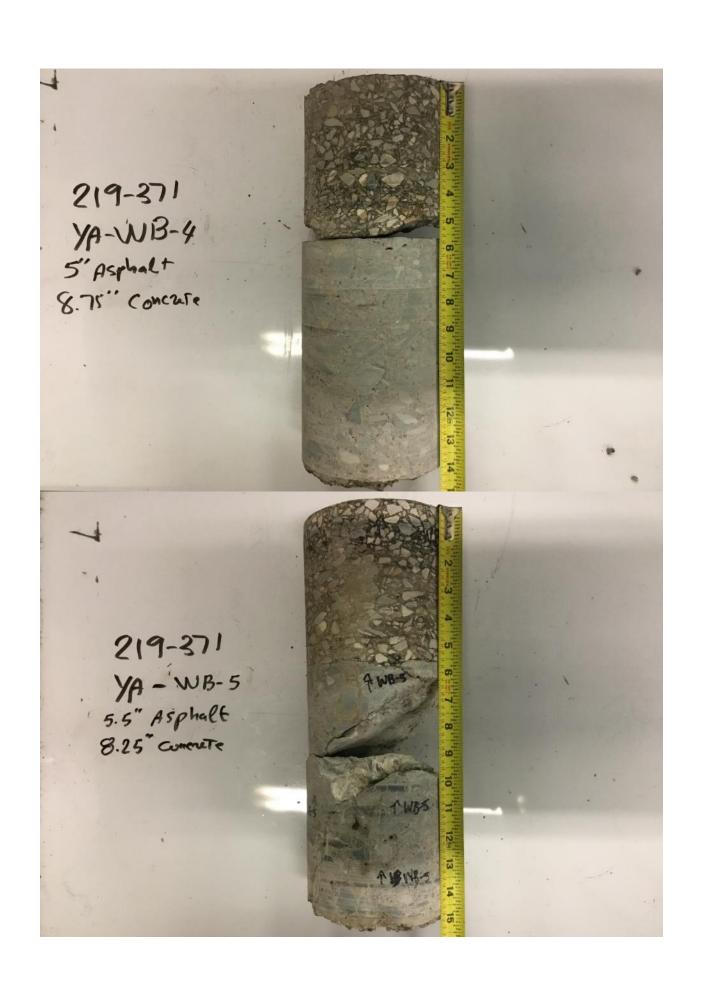

PAVEMENT CORE PHOTOS

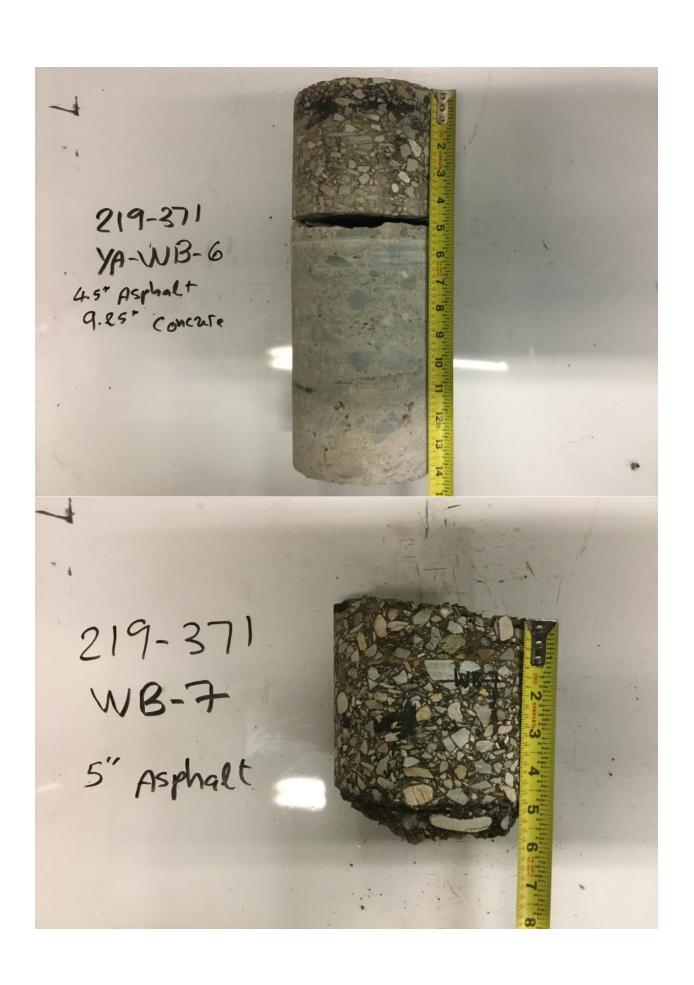


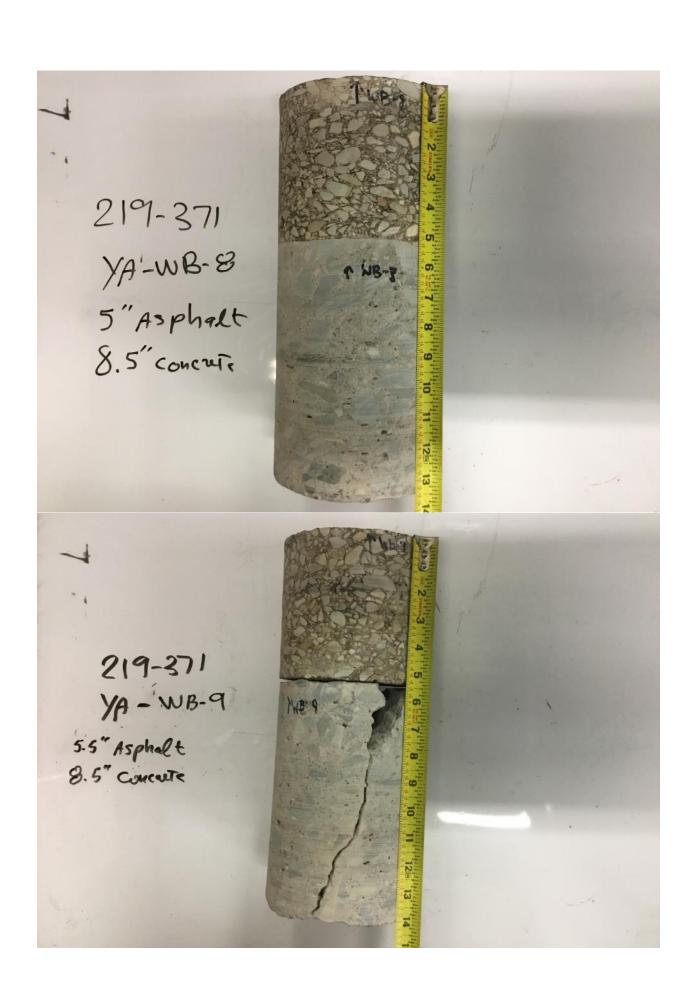


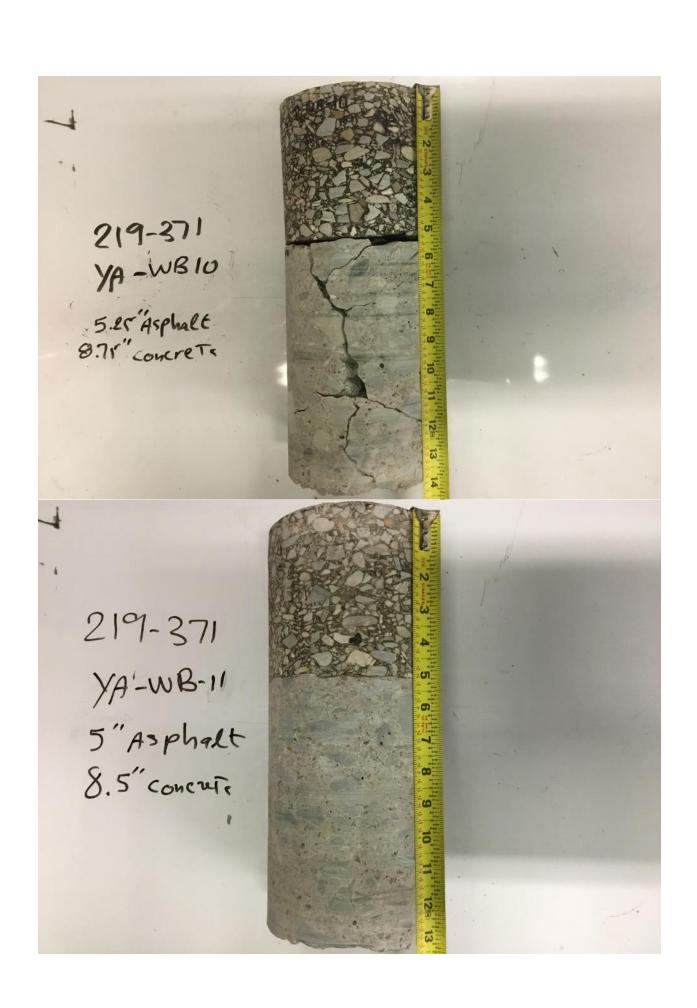


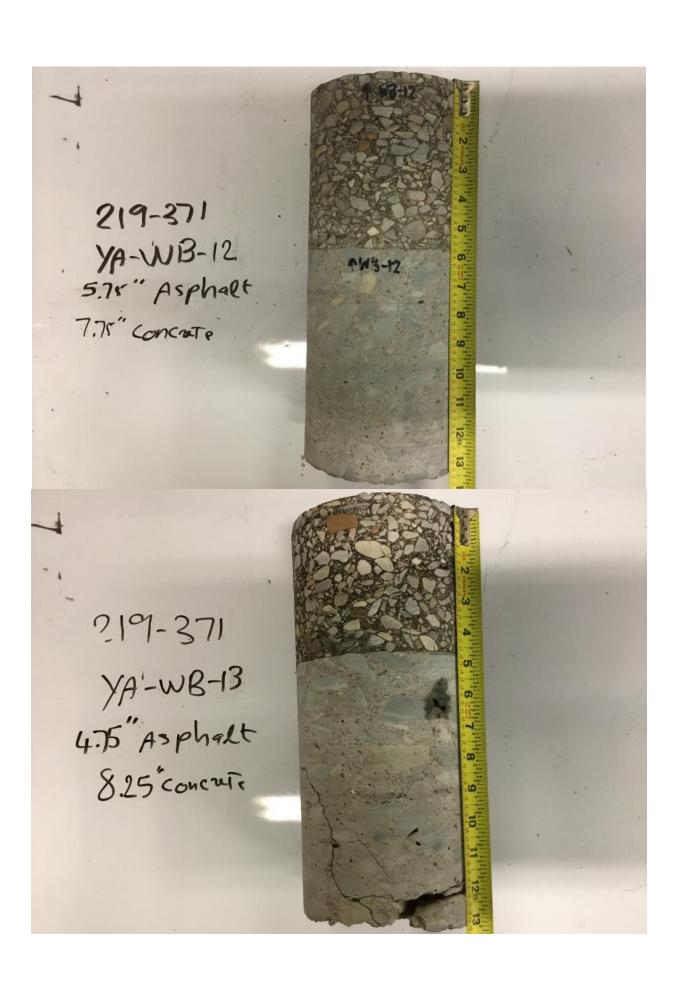












Appendix E

Traffic Data

RAIL TRANSIT AND PLANNING DIVISION TRAFFIC DATA COLLECTION SECTION

Worksheet for Engineering and Planning Purposes

Project Description:	Interstate Flexible
i idjeci Description.	interstate i lexible

IM 90-1(227)0,IM 90-1(228)0

TAFT - WEST UPN: 9487000

I-90: RP 000+0.000 to 005+0.700 Truck Distribution*

DATE: 01-Oct-20

				5	12.8 %	3.6 %
2020	AADT=_	7,500	PRESENT	6	1.2 %	0.3 %
				7	0.1 %	0.0 %
2023	AADT=	7,770	LETTING YEAR	8	1.7 %	0.5 %
2043	AADT=	9,860	DESIGN YEAR	9	69.4 %	19.6 %
	DHV=	1620	_	10	7.5 %	2.1 %
	D=		_	11	1.1 %	0.3 %
	T=	28.3%	_	12	1.9 %	0.5 %
	ESAL=	1311	_	13	4.4 %	1.3 %
	AGR=	1.2%	_			
			-		100 0 %	28 3 %

2019

K Factor= 16.40%

* Distribution: 2019 WIM Site (W-146)

* AADTs and Growth Rate: 2019 TYC

PROJECT DESCRIPTION: Interstate Flexible DATE: 01-Oct-20 PAVEMENT: RIGID:

IM 90-1(227)0, IM 90-1(228)0 FLEXIBLE: X

UPN: 9487000

LETTING YEAR ADT: 7,770 LETTING YEAR 2023 LANE DESIGN FACTOR 95 %

DESIGN YEAR ADT: 9,860 DESIGN YEAR 2043

VEHICLE TYPE	% OF TYPE	LETTING	DESIGN	MEAN	DIRECTIONAL	DESIGN	18K EQUIV	MEAN
		YEAR ADT	YEAR ADT	YEAR ADT	ADT	LANE ADT	RATE FAC	YEAR ADL
CLASS 1 & 2	44.5	3457.65	4387.7	3922.7	1961.3	1863.3	0.001	2.35
CLASS 3	26.4	2051.28	2603.0	2327.2	1163.6	1105.4	0.003	3.71
CLASS 4	0.8	63.96	81.2	72.6	36.3	34.5	0.59252	20.42
CLASS 5	3.6	279.96	355.3	317.6	158.8	150.9	0.13874	20.93
CLASS 6	0.3	25.25	32.0	28.6	14.3	13.6	0.50476	6.87
CLASS 7	0.0	1.10	1.4	1.2	0.6	0.6	0.87596	0.52
CLASS 8	0.5	36.89	46.8	41.8	20.9	19.9	0.38366	7.63
CLASS 9	19.6	1524.72	1934.8	1729.8	864.9	821.6	1.27780	1049.90
CLASS 10	2.1	163.80	207.9	185.8	92.9	88.3	0.96574	85.25
CLASS 11	0.3	24.37	30.9	27.7	13.8	13.1	1.37954	18.12
CLASS 12	0.5	42.16	53.5	47.8	23.9	22.7	0.79938	18.16
CLASS 13	1.3	97.27	123.4	110.4	55.2	52.4	1.46494	76.79
CLASS 14		0.00	0.0	0.0	0.0	0.0		0.00
CLASS 15		0.00	0.0	0.0	0.0	0.0		0.00
CLASS 16		0.00	0.0	0.0	0.0	0.0		0.00
	28.3	2195.51	2786.1	2490.8				
TOTAL VALUES	100.0							1310.64

AVERAGE DAILY 18 KIP EQUIVALENT AXLE LOAD: 1310.64

20 YEAR EQUIVALENT AXLE LOAD: 9,567,682

2020	AADT =	7,500
2023	AADT =	7770
2043	AADT =	9860
	DHV =	1620
	Direction =	
	Com Trks =	28.3%
	ESAL =	1310.64
	AGR =	1.200%

^{*} Equivalency Factors: WIM Data (2015 to 2019)

RAIL TRANSIT AND PLANNING DIVISION TRAFFIC DATA COLLECTION SECTION

Worksheet for Engineering and Planning Purposes

Project Description: Inters	state Rigid
-----------------------------	-------------

IM 90-1(227)0,IM 90-1(228)0

TAFT - WEST UPN: 9487000

I-90: RP 000+0.000 to 005+0.700 Truck Distribution*

Date: 1-Oct-20

				5	12.8 %	3.6 %
2020	AADT=	7,500	PRESENT	6	1.2 %	0.3 %
				7	0.1 %	0.0 %
2023	AADT=	7,770	LETTING YEAR	8	1.7 %	0.5 %
2043	AADT=	9,860	_ DESIGN YEAR	9	69.4 %	19.6 %
	DHV=_	1620	_	10	7.5 %	2.1 %
	D=			11	1.1 %	0.3 %
	T=_	28.3%	_	12	1.9 %	0.5 %
	ESAL=	1886	_	13	4.4 %	1.3 %
	AGR=	1.2%	_			
	_		_		100.0 %	28.3 %

2019

^{*} Distribution: 2019 WIM (Site ID: W-146)

^{*} AADTs and Growth Rate: 2019 TYC

PROJECT DESCRIPTION: Interstate Rigid DATE: 01-Oct-20 PAVEMENT: RIGID: X

IM 90-1(227)0, IM 90-1(228)0 FLEXIBLE:

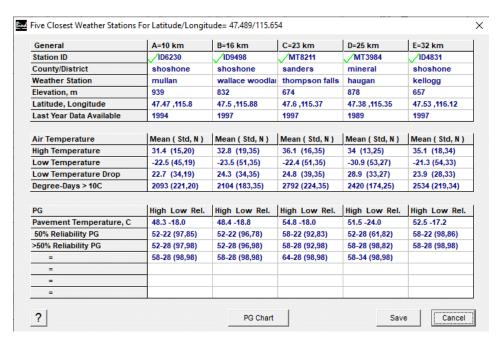
UPN: 9487000

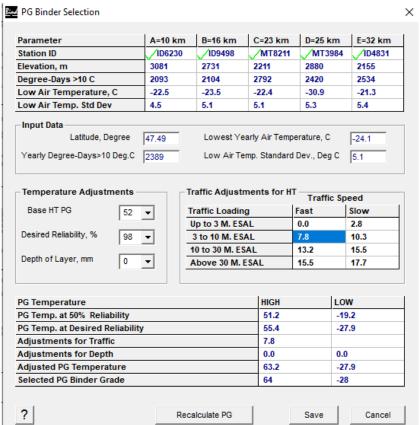
LETTING YEAR AADT: 7,770 LETTING YEAR 2023 LANE DESIGN FACTOR 90 %

DESIGN YEAR AADT: 9,860 DESIGN YEAR 2043

VEHICLE TYPE	% OF TYPE	LETTING	DESIGN	MEAN	DIRECTIONAL	DESIGN	18K EQUIV	MEAN
		YEAR ADT	YEAR ADT	YEAR ADT	ADT	LANE ADT	RATE FAC	YEAR ADL
CLASS 1 & 2	44.5	3457.65	4387.7	3922.7	1961.3	1765.2	0.0012	2.12
CLASS 3	26.4	2051.28	2603.0	2327.2	1163.6	1047.2	0.003	3.14
CLASS 4	0.8	63.96	81.2	72.6	36.3	32.7	0.68842	22.48
CLASS 5	3.6	279.96	355.3	317.6	158.8	142.9	0.13810	19.74
CLASS 6	0.3	25.25	32.0	28.6	14.3	12.9	0.70868	9.14
CLASS 7	0.0	1.10	1.4	1.2	0.6	0.6	1.50502	0.84
CLASS 8	0.5	36.89	46.8	41.8	20.9	18.8	0.40848	7.69
CLASS 9	19.6	1524.72	1934.8	1729.8	864.9	778.4	1.96834	1532.16
CLASS 10	2.1	163.80	207.9	185.8	92.9	83.6	1.82322	152.47
CLASS 11	0.3	24.37	30.9	27.7	13.8	12.4	1.30086	16.19
CLASS 12	0.5	42.16	53.5	47.8	23.9	21.5	0.80780	17.39
CLASS 13	1.3	97.27	123.4	110.4	55.2	49.7	2.06810	102.70
CLASS 14		0.00	0.0	0.0	0.0	0.0		0.00
CLASS 15		0.00	0.0	0.0	0.0	0.0		0.00
CLASS 16		0.00	0.0	0.0	0.0	0.0		0.00
	28.3	2195.51	2786.1	2490.8				
TOTAL VALUES	100.0							1886.04

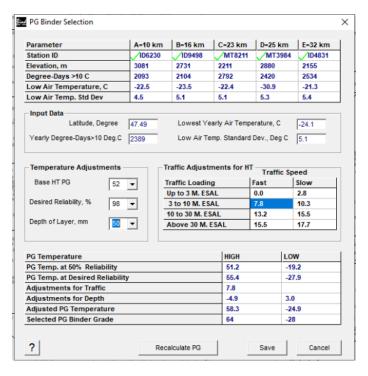
AVERAGE DAILY 18 KIP EQUIVALENT AXLE LOAD: 1886.04

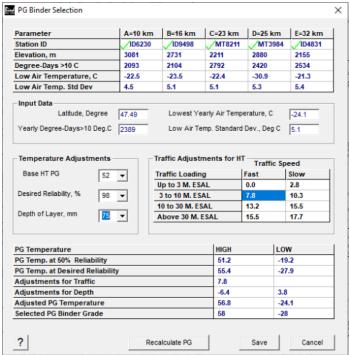

20 YEAR EQUIVALENT AXLE LOAD: 13,768,116


AADT = 2020 7,500 AADT =7770 2023 2043 AADT = 9,860 DHV = 1620 Direction = Com Trks = 28.3% ESAL = 1886.04 AGR = 1.200%

^{*} Equivalency Factors: WIM Data (2015 to 2019)

Appendix F


LTPPBIND OUTPUT



For the top mat, PG 64-28 is the recommended asphalt binder.

PG 70-28 would meet the low temperature requirements and exceed the high temperature requirements and may be recommended based on local experience because of large truck volume.

For the lower lifts of HMA, The LTPPBind Program recommends PG 64-28 at a depth of two inches and PG 58-28 for mixes placed at a depth of 3 inches.

May want to consider constructing the top HMA lift at a thickness of three inches and using PG 58-28 for HMA mixes the lifts below.