



Montana Department of Transportation -Aeronautics Division

#### Contents

| Chapter 1 – Program Introduction<br>1.1 Statewide Aviation System Plan (SASP) Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1.2 Participating Airports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
| 1.3 Project Scope and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |
| Chapter 2 – System Inventory and Network Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| 2.1 Pavement Management System Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |
| 2.1.1 PAVER Computer Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                              |
| 2.2 Network Inventory Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                              |
| 2.2.1 Pavement Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                              |
| 2.2.2 Pavement Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                              |
| 2.2.3 Pavement Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                              |
| 2.2.4 Pavement Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                              |
| 2.2.5 Pavement Inventory Hierarchy Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                              |
| 2.3 Inventory Updates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                              |
| 2.3.1 Record Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                              |
| 2.3.2 Sample Unit Updates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |
| 2.4 Pavement Inventory Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |
| 2.4.1 Pavement Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |
| 2.4.1 Pavement Age<br>2.4.2 Functional Use Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                             |
| 2.4.2 Functional Use Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| 2.4.2 Functional Use Classification<br>Chapter 3 – Pavement Condition Index Surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li> <li>3.1 PCI Survey Methodology</li> <li>3.2 Pavement Distress Mechanisms</li></ul>                                                                                                                                                                                                                                                                                                                                                                              | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>14                                                                   |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li> <li>3.1 PCI Survey Methodology</li> <li>3.2 Pavement Distress Mechanisms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             | 10<br>12<br>12<br>12<br>12<br>12<br>12<br>14                                                                   |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li> <li>3.1 PCI Survey Methodology</li> <li>3.2 Pavement Distress Mechanisms</li></ul>                                                                                                                                                                                                                                                                                                                                                                              | 10<br>12<br>12<br>12<br>12<br>12<br>14<br>14                                                                   |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li> <li>3.1 PCI Survey Methodology</li> <li>3.2 Pavement Distress Mechanisms</li> <li>3.3 Calculating the Pavement Condition Index</li> <li>3.4 Data Integrity and Quality Control</li> <li>3.5 Critical PCI</li> <li>Chapter 4 – Statewide Pavement Condition Results</li> </ul>                                                                                                                                                                                   | 10<br>12<br>12<br>12<br>12<br>14<br>14<br>16<br>16<br>17                                                       |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys.</li> <li>3.1 PCI Survey Methodology.</li> <li>3.2 Pavement Distress Mechanisms.</li> <li>3.3 Calculating the Pavement Condition Index</li> <li>3.4 Data Integrity and Quality Control.</li> <li>3.5 Critical PCI</li> <li>Chapter 4 – Statewide Pavement Condition Results.</li> <li>4.1 Statewide-Level Results.</li> </ul>                                                                                                                                        | 10<br>12<br>12<br>12<br>12<br>14<br>14<br>16<br>16<br>17                                                       |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys.</li> <li>3.1 PCI Survey Methodology.</li> <li>3.2 Pavement Distress Mechanisms.</li> <li>3.3 Calculating the Pavement Condition Index</li> <li>3.4 Data Integrity and Quality Control.</li> <li>3.5 Critical PCI</li> <li>Chapter 4 – Statewide Pavement Condition Results.</li> <li>4.1 Statewide-Level Results.</li> <li>4.2 PCI by Functional Use</li> </ul>                                                                                                     | 10<br>12<br>12<br>12<br>12<br>14<br>14<br>16<br>16<br>17<br>17<br>17                                           |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys.</li> <li>3.1 PCI Survey Methodology.</li> <li>3.2 Pavement Distress Mechanisms.</li> <li>3.3 Calculating the Pavement Condition Index.</li> <li>3.4 Data Integrity and Quality Control.</li> <li>3.5 Critical PCI.</li> <li>Chapter 4 – Statewide Pavement Condition Results.</li> <li>4.1 Statewide-Level Results.</li> <li>4.2 PCI by Functional Use</li></ul>                                                                                                    | 10<br>12<br>12<br>12<br>12<br>14<br>16<br>16<br>16<br>17<br>17<br>17<br>19                                     |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>12<br>12<br>12<br>12<br>14<br>16<br>16<br>16<br>17<br>17<br>17<br>19<br>19<br>20                         |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys.</li> <li>3.1 PCI Survey Methodology.</li> <li>3.2 Pavement Distress Mechanisms.</li> <li>3.3 Calculating the Pavement Condition Index</li> <li>3.4 Data Integrity and Quality Control</li> <li>3.5 Critical PCI</li> <li>Chapter 4 – Statewide Pavement Condition Results</li> <li>4.1 Statewide-Level Results.</li> <li>4.2 PCI by Functional Use</li> <li>4.3 PCI by Surface Type.</li> <li>4.4 Statewide PCI Summary</li> <li>Chapter 5 – Conclusion.</li> </ul> | 10<br>12<br>12<br>12<br>12<br>14<br>16<br>16<br>17<br>17<br>17<br>19<br>19<br>20<br>22                         |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>12<br>12<br>12<br>12<br>14<br>14<br>16<br>16<br>17<br>17<br>17<br>19<br>19<br>20<br>22<br>22             |
| <ul> <li>2.4.2 Functional Use Classification</li> <li>Chapter 3 – Pavement Condition Index Surveys.</li> <li>3.1 PCI Survey Methodology.</li> <li>3.2 Pavement Distress Mechanisms.</li> <li>3.3 Calculating the Pavement Condition Index</li> <li>3.4 Data Integrity and Quality Control</li> <li>3.5 Critical PCI</li> <li>Chapter 4 – Statewide Pavement Condition Results</li> <li>4.1 Statewide-Level Results.</li> <li>4.2 PCI by Functional Use</li> <li>4.3 PCI by Surface Type.</li> <li>4.4 Statewide PCI Summary</li> <li>Chapter 5 – Conclusion.</li> </ul> | 10<br>12<br>12<br>12<br>12<br>14<br>16<br>16<br>16<br>17<br>17<br>17<br>19<br>19<br>19<br>20<br>22<br>22<br>22 |



Statewide Report | i

### **Chapter 1 – Program Introduction**

#### 1.1 Statewide Aviation System Plan (SASP) Background

The Aeronautics Division (Division) of the Montana Department of Transportation (MDT) has been conducting regular updates to the SASP since 1988. As part of the program, the Division provides an update to the Pavement Condition Index (PCI) values for participating airports every three years. Kimley-Horn was contracted by MDT in coordination with the Federal Aviation Administration (FAA) and Helena Airports District Office to provide the 2021 PCI update.

Airport pavement infrastructure represents a large capital investment in the Montana airports system. Timely and appropriate maintenance and strategic rehabilitation are essential as repair costs increase in proportion to deterioration. Additionally, airport pavement distresses can contribute to the development of loose debris and decreased ride quality, which can be a safety concern for aircraft operations. The PCI methodology analyzes an overall measure of the pavement condition and provides an indication of the degree of maintenance, repair, or rehabilitation efforts that will be required to sustain functional pavement. A statewide PCI survey allows for the systematic and objective review of facilities within the program to assist in the identification of pavement needs. This objective study helps provide the sponsor justification for redevelopment of existing facilities. The State and FAA are funding this program to assist airports in remaining compliant with the AIP Handbook requirement of maintaining an ASTM PCI inspection of airfield pavements every three years.

#### **1.2 Participating Airports**

The participating airports list for the 2021 update was informed by the FAA and MDT staff. In reviewing the 2018 airport list in conjunction with the programmed AIP grant list, the FAA was able to exclude certain airports that would be undergoing significant infrastructure development in the near future. Airports that participated in past updates but were excluded from the 2021 update due to ongoing development were: 29S, 6S5, 9U0, EKS, RPX, S64, and THM.

| Airport<br>ID | Airport Name                     | Airport<br>ID                                    | Airport Name                        |  |  |
|---------------|----------------------------------|--------------------------------------------------|-------------------------------------|--|--|
| 00F           | Broadus Airport                  | СТВ                                              | Cut Bank International Airport      |  |  |
| 00U           | Big Horn County (Hardin) Airport | DLN                                              | Dillon Airport                      |  |  |
| 1S3           | Tillitt Field (Forsyth) Airport  | GDV                                              | Dawson Community (Glendive) Airport |  |  |
| 32S           | Stevensville Airport             | GGW Wokal Field/Glasgow-Valley County<br>Airport |                                     |  |  |
| 38S           | Deer Lodge-City-County Airport   | HVR                                              | Havre City-County Airport           |  |  |
| 3U3           | Bowman Field (Anaconda) Airport  | HWQ                                              | Wheatland County Airport            |  |  |
| 3U7           | Benchmark (Augusta) Airport      | JDN                                              | Jordan Airport                      |  |  |
| 3U8           | Big Sandy Airport                | LTY                                              | Liberty County (Chester) Airport    |  |  |
| 48S           | Harlem Airport                   | LVM                                              | Mission Field (Livingston) Airport  |  |  |
| 4U6           | Circle Town County Airport       | LWT                                              | Lewistown Municipal Airport         |  |  |

Table 1.1 2021 Program Participating Airports



| Airport<br>ID | Airport Name                              | Airport<br>ID | Airport Name                              |  |  |
|---------------|-------------------------------------------|---------------|-------------------------------------------|--|--|
| 4U9           | Dell Flight Strip Airport                 | M46           | Colstrip Airport                          |  |  |
| 6S0           | Big Timber Airport                        | M75           | Malta Airport                             |  |  |
| 6S3           | Woltermann Memorial (Columbus)<br>Airport | MLS           | Frank Wiley Field (Miles City) Airport    |  |  |
| 6S8           | Laurel Municipal Airport                  | OLF           | L. M. Clayton (Wolf Point) Airport        |  |  |
| 79S           | Fort Benton Airport                       | P01           | Poplar Municipal Airport                  |  |  |
| 7S0           | Ronan Airport                             | PWD           | Sher-Wood (Plentywood) Airport            |  |  |
| 7S6           | White Sulphur Springs Airport             | RED           | Red Lodge Airport                         |  |  |
| 88M           | Eureka Airport                            | RVF           | Ruby Valley Field Airport                 |  |  |
| 8S0           | Starr-Browning Airstrip                   | S01           | Conrad Airport                            |  |  |
| 8S1           | Polson Airport                            | S34           | Plains Airport                            |  |  |
| 8U6           | Terry Airport                             | S59           | Libby Airport                             |  |  |
| 8U8           | Townsend Airport                          | S69           | Lincoln Airport                           |  |  |
| 97M           | Ekalaka Airport                           | S71           | Edgar G. Obie (Chinook) Airport           |  |  |
| 9S2           | Scobey Airport                            | S85           | Big Sky Field (Culbertson) Airport        |  |  |
| 9S4           | Mineral County (Superior) Airport         | SBX           | Shelby Airport                            |  |  |
| 9S5           | Three Forks Airport                       | SDY           | Sidney-Richland Regional Airport          |  |  |
| BHK           | Baker Municipal Airport                   | U05           | Riddick Field (Phillipsburg) Airport      |  |  |
| CII           | Choteau Airport                           | WYS           | Yellowstone (West Yellowstone)<br>Airport |  |  |

#### **1.3 Project Scope and Objectives**

In accordance with FAA AC 150/5380-7B *Airport Pavement Management Program (PMP),* an effective pavement management program consists of a system that achieves specific objectives. The MDT Statewide Aviation System Plan (SASP) PCI study objectives are as follows:

- 1. Update airport pavement database for tracking maintenance and construction history.
- 2. Calibrate the database to the ASTM pavement inventory hierarchy.
- 3. Achieve a systematic means for collecting and storing information regarding the existing pavement structure and condition.
- 4. Achieve an objective and repeatable system for evaluating pavement condition.
- 5. Report new pavement conditions in an intuitive manner for improved use during AIP Grant applications.

Kimley-Horn, in association with both MDT and FAA, developed a scope to meet the project objectives. The MDT SASP PCI scope of services consists of the following:

A. The project will include fifty-six (56) airports in the program. The participating airports have changed from the 2018 update based on the discretion of MDT and the FAA. Cut Bank,



Wolfpoint, and Poplar were included under the pre-tense that MDT staff would be required to perform the field data collection if a PSA could not be obtained in time.

- B. A program-wide response form will be issued to achieve an updated contact list and request record drawings for all completed projects since the last update. Received documents will be incorporated into the PAVER database.
- C. Update existing PAVER database to the standard ASTM pavement inventory hierarchy.
- D. Update base map drawings for geometry and facility construction updates. Utilize the 93% confidence interval as indicated in the scope. Confirm any missing pavement areas via document review and include area if confirmed in the field.
- E. Conduct visual ASTM D5340 pavement condition index (PCI) survey for fifty-three (53) general aviation (GA) airports throughout the state of Montana. Three (3) airports CTB, OLF, P01 will be inspect by MDT staff.
- F. Obtain current PCI values using the most recent version of PAVER.
- G. Produce an appendix of representative photos for each airport.
- H. Produce a summary report of the observed distresses from each airport inspection.
- I. Summarize the data and findings in a technical report.



## Chapter 2 – System Inventory and Network Definition

#### 2.1 Pavement Management System Database

The database to store inventory information and analyze conditions is fundamental to the condition assessment. For this update, the MDT SASP has implemented the PAVER pavement management software. In general, a PAVER database is used to achieve the following objectives:

- Implement a system for managing pavement asset inventories, and
- Store and analyze pavement condition information.

Additionally, this software has the capabilities to create performance models to forecast conditions and develop pavement maintenance, repair, and major rehabilitation recommendations based on funding scenarios and/or constraints.

#### 2.1.1 PAVER Computer Program

PAVER was developed by the U.S. Army Construction Engineering Research Laboratory (USA-CERL) and uses the guidelines contained in FAA Advisory Circular 150/5380-6C *Guidelines and Procedures for Maintenance of Airport Pavements*. PAVER is a Windows-based program that can store information relating to pavements including, but not limited to, pavement type (layer and material property data), dates of construction, pavement condition data, traffic data, construction and maintenance history information, and nondestructive testing data, to name a few. Using the data stored in the PAVER database provides the user with many capabilities, including evaluating current condition, predicting future condition, determining maintenance and rehabilitation (M&R) needs, scheduling future inspections, and identifying budget needs based on various analysis scenarios. The existing PAVER database was updated to Version 7.0.10 as part of this update and was used to assist in updating the PCI for MDT airports.

The following steps were completed to update the existing airside PAVER database for MDT:

- Update the existing PAVER database to Version 7.0.10;
- Update PAVER inventory based on recent airfield work since 2018;
- Calibrate the existing PAVER inventory to the ASTM pavement inventory hierarchy (i.e., Network ID, Branch ID, and Section ID)
- Data collection and entry;
- Data integrity and quality control;
- Determination of current PCIs; and
- PAVER report generation and interpretation.

#### **2.2 Network Inventory Definitions**

In a PCI study, a pavement network is established and then subdivided into smaller, manageable working units. **Figure 2.1** shows the relationship between branches, sections, and sample units within a pavement network. The following terms describe this network definition hierarchy and will be referred to throughout this report.



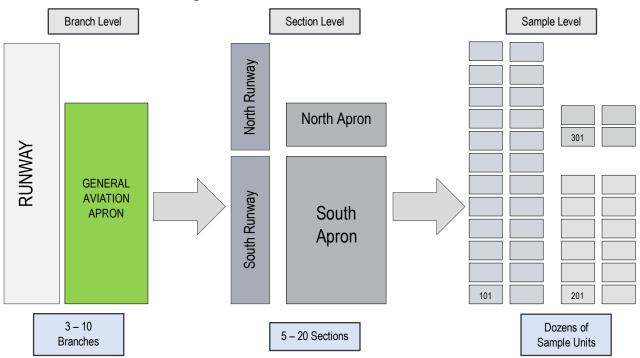



Figure 2.1 Pavement Network Definitions

#### **2.2.1 Pavement Network**

A pavement network is the starting point for the hierarchy of pavement management organization and is a logical unit for organizing airfield pavements. For example, for MDT and most other statewide systems, the network includes all non-privately maintained pavement facilities at the airport. Thus, the network name is interchangeable with the airport name.

#### 2.2.2 Pavement Branch

A pavement branch, or facility, is a logical unit of generally identifiable pavement within a network with a distinct functional classification. For example, in an airfield environment, runways, taxiways, and aprons are considered separate branches. A branch must consist of at least one section.

#### 2.2.3 Pavement Section

A pavement section is a subdivision of a branch that has consistent characteristics and condition levels throughout its area. These characteristics include structural composition (pavement layer material type and thickness), construction history, age, traffic type and frequency, and pavement condition. A section is the basic management unit of a pavement network and is the level at which condition results are analyzed.

#### 2.2.4 Pavement Sample

A pavement sample (or sample unit) is a part of a pavement section that is evaluated according to the ASTM D5340 methodology. Sample unit areas are typically 5,000 contiguous square feet ( $\pm$  2,000 square feet) for flexible (asphalt) pavement and 20 contiguous slabs ( $\pm$  8 slabs) for rigid (concrete) pavement.



#### 2.2.5 Pavement Inventory Hierarchy Update

The PAVER database is programmed to store pavement inventory data in the typical ASTM hierarchy format explained herein, beginning with Network, followed by Branch and Section, respectively. An effort was undergone in the 2021 update to correctly categorize pavement inventory data according to the ASTM hierarchy. The existing 2018 MDT PAVER database inherited by Kimley-Horn contained inventory information improperly categorized. Previously, all airports contained the same Network-Level Identifier, Airport Identifiers (Network IDs) were stored as the Branch Name, and Branch IDs were not identified beyond an arbitrary number followed by a simple "R" for runway, "T" for Taxiway, etc. This resulted in the absence of pavement Branch delineation. In other words, separate taxiway facilities (Taxiway A and Taxiway B for example) had no Branch ID to delineate them as separate facilities or to summarize PCI data according to Branch facility.

The update performed to the database hierarchy included separating airports at the Network level and adding Branch IDs. The Network ID for each airport now consists of the FAA Identifier that was previously stored as the Branch ID. The updated Branch ID, however, since not previously delineated, now consists of the Branch Use as the Branch ID for all Taxiway and Apron pavements (i.e., "TW" for all taxiways). It is recommended that in future updates an emphasis be placed on further delineating the airfield Branch IDs to differentiate between different facilities and to more accurately identify them based on actual naming designations (i.e., "TW B" for Taxiway B).

The naming convention for runway facilities was updated from previous studies to reflect the runway designation more accurately. Previously, runway branches were assigned an arbitrary letter/number combination. For example, at Polson Airport, "03R:R11" was previously the Branch ID:Section ID for Runway 18-36. Runway Branch IDs are now presented with part of the actual runway designation in the label for easier identification. For example, "RW18" is the new Branch ID and the new Branch Name reflecting Runway 18-36. Runway 18-36 is identified on the PCI exhibit as RW18:11 as the new Branch-Section Identifier.

#### **2.3 Inventory Updates**

As part of the update, Kimley-Horn was tasked with updating the recent work history and CAD files since the last inspection in 2018. In response to a statewide request, MDT, sponsors, and the airport consultants have provided available information regarding recent maintenance or construction. Construction projects that impacted existing pavement sections or geometry were reflected in the PAVER database and associated AutoCAD drawings. Major rehabilitation or construction activities in the twelve months prior to inspection are assumed to restore the PCI to 100 and were omitted from ASTM PCI survey.

Some airports were noted as having areas of pavement that were missing from the network definition map in previous studies. In general, if these areas were part of the airside pavement network, these areas were added into the network definition map prior to the field inspection for verification and inclusion in this PCI study.

There are certain common areas of pavement, however, that have not been included in the airfield pavement network at the airports, including shoulders, blast pads, non-aircraft pavements, areas that are closed or fenced off, and privately owned/maintained areas, such as private hangar aprons. Many of these areas were labeled as "exempt" in previous PCI studies.



#### 2.3.1 Record Documentation

It is encouraged by the FAA that airports maintain records of all airfield construction and maintenance related to the pavement facilities. A history of maintenance and rehabilitation (M&R) performed, and the associated costs can provide valuable information on the cost and effectiveness of various treatments. Relevant record documentation includes the following:

- Location and limits of work
- Type of work
- Cost of work
- Supporting documents (contract documents, construction drawings, specifications, bid tabulations, repair product, photograph records, etc.)

#### 2.3.2 Sample Unit Updates

During a visual condition survey, random samples of a pavement network are taken to provide a statistical reliability as outlined in the FAA Advisory Circular 150/5380-7B *Airport Pavement Management Program.* In total, a sampling rate similar to what was used in the 2018 PCI study was used to inspect the airside pavement networks at MDT airports in 2021.

With the exception of areas where major rehabilitation efforts resulted in an update to the network definition since the previous study, sample units in the same representative area as previous inspections were inspected for data consistency. Subsequent network inspections should be completed with this same frequency and sample locations to better predict the future PCI of the pavements.

Pavement sections added to the scope of the PCI study were inspected at a sampling rate that achieved an estimated 93% confidence interval, matching the standard sampling rate of prior studies.

#### 2.4 Pavement Inventory Summary

#### 2.4.1 Pavement Age

Standard pavement design practices typically consider a 20-year design life. Design inputs include factors such as subgrade soil conditions, pavement material characteristics and layer properties, and anticipated traffic volumes and types for the design period. Based on the review of the historic pavement construction at the participating airports, **Table 2.1** summarizes the age of the inspected pavement sections at the time of the PCI evaluations.




| Age Category  | Pavement Area<br>(SF) | % Area | No. of<br>Sections | % Sections | Average Age at Inspection |
|---------------|-----------------------|--------|--------------------|------------|---------------------------|
| 00-02         | 2,567,593             | 6%     | 41                 | 10.0%      | 0                         |
| 03-05         | 3,467,698             | 8%     | 44                 | 11.0%      | 4                         |
| 06-10         | 6,257,802             | 15%    | 45                 | 11.0%      | 8                         |
| 11-15         | 9,398,824             | 22%    | 86                 | 21.0%      | 12                        |
| 16-20         | 11,084,305            | 26%    | 99                 | 23.0%      | 18                        |
| 21-25         | 6,324,323             | 15%    | 61                 | 15.0%      | 23                        |
| 26-30         | 1,645,824             | 4%     | 21                 | 5.0%       | 28                        |
| 31-35         | 311,876               | 1%     | 9                  | 2.0%       | 34                        |
| 36-40         | 317,150               | 1%     | 6                  | 1.0%       | 37                        |
| 41-50         | 70,000                | 0%     | 1                  | 0.0%       | 41                        |
| 50+           | 701,467               | 2%     | 5                  | 1.0%       | 53                        |
| Total/Average | 42,146,862            | 100%   | 418                | 100%       | 15.2                      |

#### Table 2.1 Pavement Age at Time of Inspection



Pavement age is defined as the number of years since any major construction activity has occurred. Major construction is defined as any construction activity that substantially improves the pavement, such as a mill and overlay or full depth reconstruction. The pavement ages reported here are intended to be a rough estimate based on interpretation of the data provided by MDT or the record documentation. Presently, nearly 48% of airfield pavements are between 10 to 20 years of age, while approximately 29% of all pavements are less 10 years old. Airfield pavements above the standard FAA design life of 20 years represent 23% of all pavement area. **Figure 2.2** summarizes this information graphically.



#### Figure 2.2 Pavement Age Distribution

#### 2.4.2 Functional Use Classification

Airfield pavements are subjected to various vehicle loading patterns based on utilization and overall operational use. The functional use categories defined for the Montana statewide program include Runway, Taxiway, and Apron. No shoulder, blast pad, or non-aircraft pavement was evaluated as part of this study. **Table 2.2** provides summary statistics for the various functional classifications and **Figure 2.3** depicts this information graphically.

| Functional Classification | Pavement Area<br>(SF) | % Area | # Sections |
|---------------------------|-----------------------|--------|------------|
| RUNWAY                    | 25,097,580            | 60%    | 89         |
| TAXIWAY                   | 9,448,409             | 22%    | 206        |
| APRON                     | 7,600,873             | 18%    | 123        |
| TOTAL                     | 42,146,862            | 100%   | 418        |



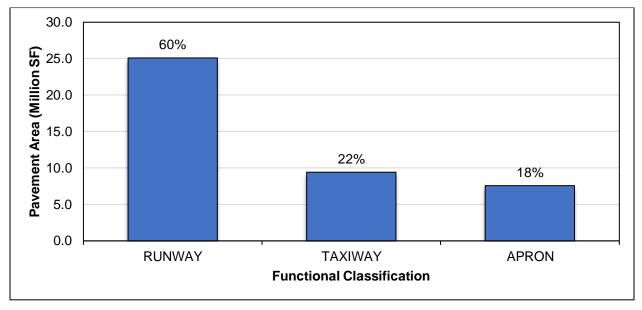



Figure 2.3 Pavement Functional Classifications by Area



### Chapter 3 – Pavement Condition Index Surveys

Visual condition surveys were completed at 56 public-use Montana airports. Visually identifying a specific pavement distress type (i.e., load- or climate-related), determining the severity and quantity of the distress, and computing a PCI value provides valuable information to identify possible causes of the pavement deterioration and eventually help in developing maintenance and rehabilitation (M&R) recommendations.

It should be noted that the PCI method of pavement condition evaluation is strictly a visual and functional evaluation. Further evaluation of the pavement condition may be necessary for design and/or project-level determination of pavement rehabilitation. For example, pavements exhibiting visual indications of load-related distress can be further evaluated by conducting a structural evaluation consisting of non-destructive testing methods prior to project determination and implementation.

#### 3.1 PCI Survey Methodology

Pavement condition assessments on behalf of MDT relied on use of the PCI survey method of inspection to collect pavement distress data. As noted above, the PCI survey is a visual statistical method for recording distress types, quantities, and severity levels. It is the most commonly used method for obtaining and recording airfield pavement distress data.

The method was developed by the United States Army Corps of Engineers (USACE) and later standardized by the ASTM National. The PCI value ranges from 0 to 100, with 0 indicating a failed pavement and 100 indicating a pavement in new condition. Several factors contribute to the PCI score, including the type, severity, and quantity of each distress. Together, these factors help to determine the deduct value, or numerical reduction from 100, that each observed distress contributes to the PCI of the sample unit.

#### **3.2 Pavement Distress Mechanisms**

Pavement distress types have varying deduct values that affect the overall PCI of a given sample unit, which is largely due to the underlying factors that cause the distress. Typically, most pavement distresses can be attributed to **loading**, **climate**, or **other** influences.

**Load**-related distresses typically have the highest PCI deduct values. They exist where the pavement is likely insufficient to accommodate applied wheel loads, and the effects are subsequently visible at the surface of the pavement. Asphalt pavement distresses, such as alligator cracking and rutting, and concrete pavement distresses, such as corner breaks and shattered slabs, are load-related distresses and can be indications of a structural failure of the pavement.

Pavement distresses caused by **climate** are directly related to the process of oxidation and the effects of freeze-thaw cycles. As soon as asphalt pavement is constructed, it is immediately influenced by the effects of oxidation due to exposure to the environment. Over time, the pavement becomes less flexible and more brittle, allowing the effects of climate to gradually deteriorate the pavement. Specifically, the combination of brittle pavement and freeze-thaw action



can cause common climate-related distresses such as longitudinal and transverse (L&T) cracking, block cracking, raveling, and weathering in AC pavement, and blow-ups, durability cracking, joint seal damage, and shrinkage cracking in Portland cement concrete (PCC) pavement.

Distresses caused by **other** influences tend to range in criticality. Distresses categorized as "other" can include inconsistent mixes, human error in design and construction, and inadequate pavement materials used during construction. In AC pavement, typical distresses caused from other influences include bleeding, corrugation, depression, and oil spillage, while typical PCC distresses caused from other influences include popouts, pumping, and scaling.

The ASTM distresses can be found in **Table 3.1** with their associated primary mechanism or potential causes. For more information on the distress cause and how they are quantified in the PCI procedure, reference the most recent copy of ASTM D5340.

| AC Pavement Distresses           |                                               |  |  |  |
|----------------------------------|-----------------------------------------------|--|--|--|
| Distress                         | Common Distress Mechanisms / Potential Causes |  |  |  |
| Alligator Cracking               | Load / Fatigue                                |  |  |  |
| Bleeding                         | Construction Quality/ Mix Design              |  |  |  |
| Block Cracking                   | Climate / Age                                 |  |  |  |
| Corrugation                      | Load / Construction Quality                   |  |  |  |
| Depression                       | Load / Subsurface                             |  |  |  |
| Jet Blast                        | Aircraft                                      |  |  |  |
| Joint Reflection - Cracking      | Climate / Subsurface Pavement / Traffic Load  |  |  |  |
| Longitudinal/Transverse Cracking | Climate / Construction Quality                |  |  |  |
| Oil Spillage                     | Aircraft / Vehicle                            |  |  |  |
| Patching                         | Utility / Pavement Repair / Age               |  |  |  |
| Polished Aggregate               | Repeated Traffic Loading                      |  |  |  |
| Raveling                         | Climate / Age                                 |  |  |  |
| Rutting                          | Load / Fatigue                                |  |  |  |
| Shoving                          | PCC Pavement Growth / Movement                |  |  |  |
| Slippage Cracking                | Load / Pavement Bond / Mix Design             |  |  |  |
| Swelling                         | Climate / Subsurface                          |  |  |  |
| Weathering                       | Climate / Age                                 |  |  |  |

 Table 3.1 Airfield Pavement Distresses and Common Distress Mechanisms



| PCC Pavement Distresses      |                                                                                                            |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Distress                     | Common Distress Mechanisms                                                                                 |  |  |  |
| Blowup                       | Climate / ASR                                                                                              |  |  |  |
| Corner Break                 | Load Repetition / Curling Stresses                                                                         |  |  |  |
| Linear Cracking              | Load Repetition / Curling Stresses / Shrinkage Stresses                                                    |  |  |  |
| Durability Cracking          | Freeze-Thaw Cycling                                                                                        |  |  |  |
| Joint Seal Damage            | Material Deterioration / Construction Quality / Age                                                        |  |  |  |
| Small Patch                  | Pavement Repair                                                                                            |  |  |  |
| Large Patch/Utility Cut      | Utility / Pavement Repair                                                                                  |  |  |  |
| Popout                       | Freeze-Thaw Cycling / ASR / Material Quality                                                               |  |  |  |
| Pumping                      | Load Repetition / Poor Joint Sealant                                                                       |  |  |  |
| Scaling                      | Construction Quality / Freeze-Thaw Cycling                                                                 |  |  |  |
| Faulting                     | Subgrade Quality / ASR / Inadequate Load Transfer                                                          |  |  |  |
| Shattered Slab               | Overloading                                                                                                |  |  |  |
| Shrinkage Cracking           | Construction Quality / Climate                                                                             |  |  |  |
| Joint Spalling               | Load Repetition / Infiltration of Incompressible Material /<br>Deterioration of Dowel (Load Transfer) Bars |  |  |  |
| Corner Spalling              | Load Repetition / Infiltration of Incompressible Material /<br>Deterioration of Dowel (Load Transfer) Bars |  |  |  |
| Alkali-Silica Reaction (ASR) | Construction Quality / Climate / Chemical Reaction                                                         |  |  |  |

#### **3.3 Calculating the Pavement Condition Index**

Visual condition data collected during the PCI inspections was entered into the PAVER database. PAVER was then used to calculate the current PCI for each sample unit and section. As noted above, the PCI is a number ranging from 0 to 100 that indicates the apparent structural integrity and surface operational condition of the pavement, with "100" indicating a pavement in new condition and "0" indicating a failed pavement section. Pavement Condition Ratings are associated with PCI ranges and these ratings vary from *Failed* to *Good* and assigned a corresponding color scale as noted in **Table 3.3**.

To calculate a PCI for a given sample unit, each distress type observed is assigned a deduct value based on its density (frequency of occurrence) and severity within that sample area. All deducts are summed and subsequently adjusted (or corrected) for the number of different distresses found. This corrected deduct value is subtracted from 100 to arrive at the PCI for that particular sample unit. The PCI for a pavement section is the mean PCI value of all sample units evaluated within that section.

Based on the visual condition data gathered and the likely causes associated with these distresses (i.e., load-, climate/environment-related), the engineer has some understanding of the cause of deterioration over the life of the pavement. Analyzing the potential causes of deterioration exhibited helps the user identify proper maintenance and rehabilitation strategies.



**Table 3.3** shows the Pavement Condition Ratings and range of PCI values to which each descriptive rating corresponds.

| Representative Photo | Pavement<br>Condition<br>Rating | PCI<br>Range                                                                                                                                                    | Description                                                                                                                                                                  |  |  |  |
|----------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                      | Good                            | 86 - 100                                                                                                                                                        | Pavement has minor or no distresses present and may benefit from routine maintenance                                                                                         |  |  |  |
|                      | Satisfactory                    | 71 - 85                                                                                                                                                         | Pavement has dispersed low-severity<br>distresses that should require only<br>routine maintenance                                                                            |  |  |  |
|                      | Fair                            | Pavement has a combination<br>generally low- and medium-sev<br>distresses that may require e<br>routine maintenance or rehabilita<br>such as a mill and overlay |                                                                                                                                                                              |  |  |  |
|                      | Poor                            | 41 - 55                                                                                                                                                         | Pavement has a combination of low-,<br>medium, and high-severity distresses<br>that often cause operation issues,<br>often necessitating rehabilitation or<br>reconstruction |  |  |  |
|                      | Very Poor                       | 26 - 40                                                                                                                                                         | Pavement is categorized by a significant amount of medium- and high-severity distresses that cause prominent operational issues, necessitating reconstruction                |  |  |  |
|                      | Serious                         | 11 - 25                                                                                                                                                         | Pavement contains primarily high-<br>severity distresses that cause<br>operational safety concerns, requiring<br>immediate repairs or complete<br>reconstruction             |  |  |  |
|                      | Failed                          | 0 - 10                                                                                                                                                          | Pavement poses significant safety concerns and is no longer operationally usable or safe, requiring complete reconstruction                                                  |  |  |  |

Table 3.3 Pavement Condition Index - Condition Range Summary



#### **3.4 Data Integrity and Quality Control**

Because the usefulness of the PAVER database outputs is dependent on the accuracy of the data contained in it, it is essential that all data be carefully reviewed by senior pavement engineers for quality control. Once all the information obtained was entered into the PAVER database, spreadsheets were generated and checked for discrepancies against the tablet-stored data collected in the field and corrections were made as needed.

#### **3.5 Critical PCI**

An important concept in pavement management is the critical PCI value, a value that prompts major rehabilitation activities. It serves as a condition threshold that helps determine a section's suitability to receive major work. As soon as a section's PCI reaches the critical PCI value, the rate of PCI loss (deterioration) is expected to increase. The critical PCI concept assumes that once a pavement section deteriorates to the critical level, it is more cost-effective to complete a major rehabilitation project rather than continuing to apply preventive maintenance or to defer major work until more costly reconstruction activities are required.

Historically, critical PCI values can vary and are typically based on a pavement's surface type, functional use, and importance, or priority, in daily operations. Based on FAA Order 5100.38D Change 1 Airport Improvement Handbook, issued February 26, 2019, the FAA has established pavement construction based on thresholds that distinguish Rehabilitation and Reconstruction. Pavement sections between PCI Values 56 and 70 will be considered for rehabilitation and sections between PCI Values 0 to 55 will be considered for reconstruction at the planning-level, as shown in **Table 3.4**. It is recommended that participating airports use these PCI thresholds as guidance for future airfield pavement projects to maintain alignment with the FAA AIP eligibility for project planning.

| Pavement Condition Index Requirements for Airfield Pavement Projects         |                               |  |  |  |
|------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Airfield Pavement Project Type Pavement Condition Index (PCI)<br>Requirement |                               |  |  |  |
| Reconstruction                                                               | $PCI \le 55$ (Poor and below) |  |  |  |
| Rehabilitation                                                               | 55 < PCI ≤ 70 (Fair)          |  |  |  |
| Maintenance                                                                  | N/A                           |  |  |  |

Table 3.4 FAA AIP Handbook M&R PCI Requirements

Source: AIP Handbook, in reference to Runways, Taxiways, and Aprons as seen in table G -2, H-1, and I -1 respectively



### Chapter 4 – Statewide Pavement Condition Results

#### 4.1 Statewide-Level Results

The following **Table 4.1** summarizes the pavement condition analysis at each participating airport based on the most recent PCI Survey inspection results. These PCI values are intended for a high-level summary, further detail for each airport's PCI results can be found in the individual airport report.

| Airport |                                           |               | hted Pavem)<br>PC) |              | tion Index     |
|---------|-------------------------------------------|---------------|--------------------|--------------|----------------|
| ID      | Alipon Name                               | Runway<br>PCI | Taxiway<br>PCI     | Apron<br>PCI | Overall<br>PCI |
| 00F     | Broadus Airport                           | 80            | 82                 | 83           | 80             |
| 00U     | Big Horn County (Hardin) Airport          | 87            | 94                 | 91           | 89             |
| 1S3     | Tillitt Field (Forsyth) Airport           | 86            | 86                 | 88           | 86             |
| 32S     | Stevensville Airport                      | 90            | 85                 | 100          | 90             |
| 38S     | Deer Lodge-City-County Airport            | 83            | 92                 | 79           | 83             |
| 3U3     | Bowman Field (Anaconda) Airport           | 80            | 83                 | 100          | 83             |
| 3U7     | Benchmark (Augusta) Airport               | 56            | -                  | 51           | 55             |
| 3U8     | Big Sandy Airport                         | 85            | 92                 | 77           | 85             |
| 48S     | Harlem Airport                            | 68            | 66                 | 68           | 67             |
| 4U6     | Circle Town County Airport                | 72            | 70                 | 67           | 71             |
| 4U9     | Dell Flight Strip                         | 47            | 56                 | 49           | 48             |
| 6S0     | Big Timber Airport                        | 66            | 76                 | 64           | 68             |
| 6S3     | Woltermann Memorial (Columbus)<br>Airport | 100           | 97                 | 97           | 98             |
| 6S8     | Laurel Municipal Airport                  | 75            | 67                 | 68           | 71             |
| 79S     | Fort Benton Airport                       | 93            | 95                 | 94           | 94             |
| 7S0     | Ronan Airport                             | 64            | 67                 | 65           | 65             |
| 7S6     | White Sulphur Springs Airport             | 85            | 77                 | 94           | 85             |
| 88M     | Eureka Airport                            | 92            | 90                 | 91           | 91             |
| 8S0     | Starr-Browning Airstrip                   | 73            | 56                 | 57           | 71             |
| 8S1     | Polson Airport                            | 47            | 61                 | 59           | 54             |
| 8U6     | Terry Airport                             | 72            | 78                 | 60           | 70             |
| 8U8     | Townsend Airport                          | 64            | 59                 | 56           | 61             |
| 97M     | Ekalaka Airport                           | 77            | 83                 | 67           | 76             |
| 9S2     | Scobey Airport                            | 90            | 67                 | 51           | 82             |
| 9S4     | Mineral County (Superior) Airport         | 82            | 78                 | 80           | 81             |
| 9S5     | Three Forks Airport                       | 68            | 68                 | 65           | 68             |

#### Table 4.1 2021 PCI Results by Airport



| Airport |                                              |               | hted Pavem)<br>PC) |              | tion Index     |
|---------|----------------------------------------------|---------------|--------------------|--------------|----------------|
| ID      | Alipoit Name                                 | Runway<br>PCI | Taxiway<br>PCI     | Apron<br>PCI | Overall<br>PCI |
| BHK     | Baker Municipal Airport                      | 83            | 77                 | 78           | 80             |
| CII     | Choteau Airport                              | 72            | 77                 | 81           | 73             |
| СТВ     | Cut Bank International Airport               | 79            | 75                 | 100          | 79             |
| DLN     | Dillon Airport                               | 61            | 59                 | 80           | 66             |
| GDV     | Dawson Community (Glendive)<br>Airport       | 70            | 73                 | 75           | 72             |
| GGW     | Wokal Field/Glasgow-Valley County<br>Airport | 80            | 63                 | 62           | 74             |
| HVR     | Havre City-County Airport                    | 94            | 90                 | 90           | 92             |
| HWQ     | Wheatland County Airport                     | 96            | 96                 | 95           | 95             |
| JDN     | Jordan Airport                               | 68            | 77                 | 68           | 68             |
| LTY     | Liberty County (Chester) Airport             | 82            | 78                 | 74           | 79             |
| LVM     | Mission Field (Livingston) Airport           | 88            | 90                 | 89           | 88             |
| LWT     | Lewistown Municipal Airport                  | 88            | 62                 | 85           | 76             |
| M46     | Colstrip Airport                             | 80            | 76                 | 77           | 79             |
| M75     | Malta Airport                                | 79            | 76                 | 86           | 80             |
| MLS     | Frank Wiley Field Airport                    | 82            | 74                 | 72           | 79             |
| OLF     | L. M. Clayton (Wolf Point) Airport           | 74            | 73                 | 74           | 73             |
| PO1     | Poplar Municipal Airport                     | 87            | 92                 | 92           | 88             |
| PWD     | Sher-Wood (Plentywood) Airport               | 83            | 82                 | 80           | 82             |
| RED     | Red Lodge Airport                            | 17            | 17                 | 62           | 40             |
| RVF     | Ruby Valley Field Airport                    | 81            | 85                 | 87           | 83             |
| S01     | Conrad Airport                               | 52            | 78                 | 58           | 54             |
| S34     | Plains Airport                               | 87            | 89                 | 80           | 85             |
| S59     | Libby Airport                                | 100           | 89                 | 82           | 92             |
| S69     | Lincoln Airport                              | 77            | 85                 | 86           | 80             |
| S71     | Edgar G. Obie (Chinook) Airport              | 75            | 81                 | 89           | 79             |
| S85     | Big Sky Field (Culbertson) Airport           | 83            | 90                 | 77           | 83             |
| SBX     | Shelby Airport                               | 76            | 84                 | 77           | 79             |
| SDY     | Sidney-Richland Regional Airport             | 71            | 83                 | 74           | 75             |
| U05     | Riddick Field (Phillipsburg) Airport         | 10            | 26                 | 18           | 12             |
| WYS     | Yellowstone (West Yellowstone)<br>Airport    | 71            | 93                 | 93           | 82             |



#### **4.2 PCI by Functional Use**

The following **Figure 4.1** depicts the Statewide System area-weighted PCI for each pavement functional use – Runway, Taxiway, and Apron.





#### 4.3 PCI by Surface Type

Pavement facility surface types considered for the PCI update consist of the four common types: Portland Cement Concrete (PCC), Asphalt Concrete Overlaid on Portland Cement Concrete Pavement (APC), Asphalt Concrete Pavement (AC), and Asphalt Concrete Overlaid on Asphalt Concrete (AAC). The following **Figure 4.2** summarizes the Statewide System PCI determined based on the various pavement types within the participating airports.

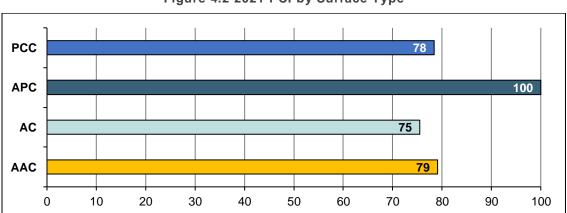



Figure 4.2 2021 PCI by Surface Type

\*APC – Asphalt over Portland cement concrete pavements – according to the database, are recently constructed therefore that surface type represents a PCI of 100.



#### 4.4 Statewide PCI Summary

The following **Figure 4.3 (a)** provides the categorical summary of the statewide PCI as a relative area percentage. Furthermore, **Figure 4.3 (b) through (d)** depict the relative area as a percentage based on Functional Use. On a network level, approximately 73% of surveyed pavements are in Good or Satisfactory condition. Presently, roughly 18% of surveyed pavements are in Fair condition and the remaining 9% of surveyed pavements are in Poor or worse condition.

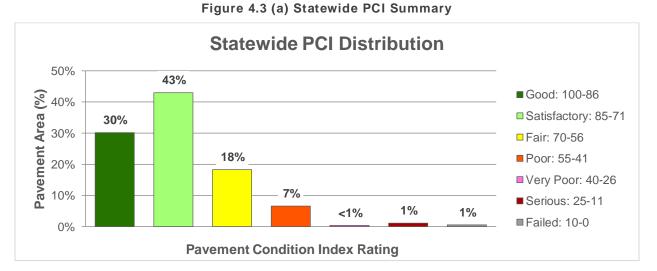
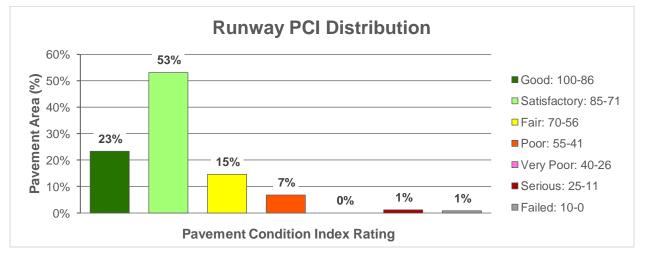
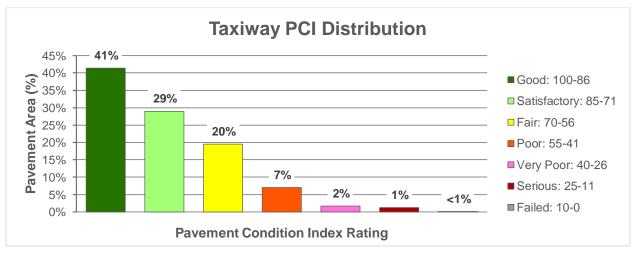
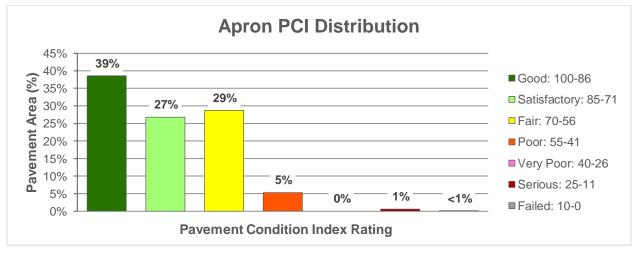





Figure 4.3 (b) Statewide PCI Summary – Runways
















### **Chapter 5 – Conclusion**

#### **5.1 Re-Inspection of Pavements**

A high priority should be given for continuous maintenance and re-inspection of pavements to ensure continued safe aircraft operations. While deterioration of the pavements due to usage and exposure to the environment cannot be completely prevented, applying timely and effective maintenance strategies can slow the anticipated rate of deterioration. Lack of adequate and timely maintenance is large contributor to pavement deterioration.

A series of scheduled periodic inspections must be carried out for an effective maintenance program. Re-inspection of pavements should be scheduled to ensure that all areas, particularly those that may not come under day-to-day observation, are thoroughly evaluated and reported. Thorough inspections of all paved areas should be scheduled accordingly. It is recommended that a PCI survey be performed, and the PAVER database be updated on a three-year basis for each pavement section of the network.

#### **5.2 Project Level Rehabilitation Projects (Design Level)**

Prior to implementing major rehabilitation projects, it is recommended that each airport and their consultant perform a full project-level evaluation of the specific section(s) of pavements during the design process. Specific pavement rehabilitation alternatives can then be developed based on specific conditions at the time of rehabilitation and a recommended alternative can be selected after a life-cycle cost analysis is performed.

#### **5.3 Pavement Management System Recommendations**

The following recommendations are made to fully implement a pavement management program for each MDT airport:

- Develop a detailed preventative maintenance program.
- Further refine and implement the updated recommended rehabilitation program.
- Maintain the PAVER program either through a consultant or trained in-house staff.
- Routinely update PAVER with new construction and maintenance cost data.
- Update the PCI on a three-year cycle to see the greatest benefit.
- Develop a Statewide Pavement Design Criteria Report with design guidelines for each subsequent design project(s) that will take into consideration the recommendations of this report.



### **Individual Airport Reports**



Kimley-Horn Contact Kevin Stone, P.E. Kevin.Stone@kimley-horn.com 407-412-7809

## **Kimley**»Horn