

Investigation of Concrete Bridge Deck Cracking

www.wje.com

Todd Nelson, P.E. – Associate Principal

Investigation of Concrete Bridge Deck Cracking

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Project Background
- Field Investigations
- Laboratory Evaluations
- Thermal and Stress Modeling
- Recommendations
- Why are we still having these problems?

Comprehensive Investigation

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

 Hands-on practical and multi-disciplinary approach to investigate the problem AND provide reasonable recommendations:

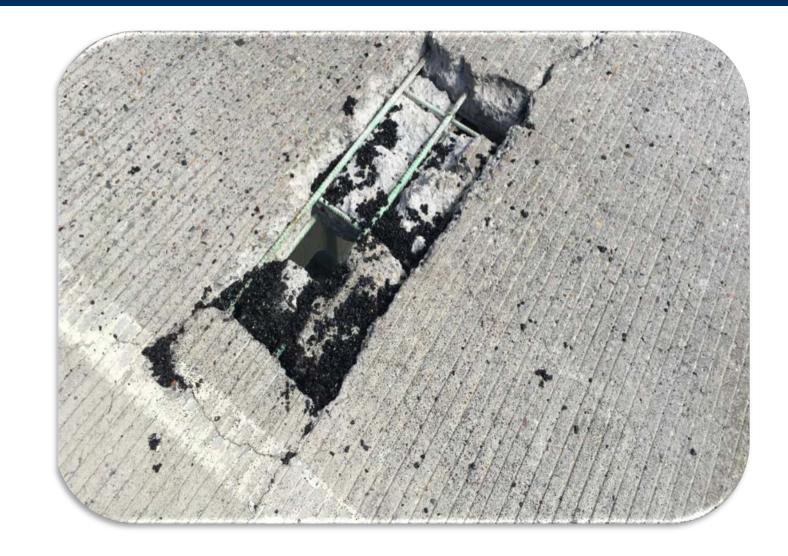
- Field Investigation
- Laboratory Evaluations
- Thermal and stress modeling

Project Background - General

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- MDT communicated to WJE that severe transverse cracking was noted on a number of bridge decks in western Montana
- In three bridges, cracking led to deck penetrations (holes in the deck)
- Concrete decks were only 1 to 9 years old
- MDT and FHWA commissioned WJE in early 2016 to investigate the problem

Project Background – MDT Documentation


- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

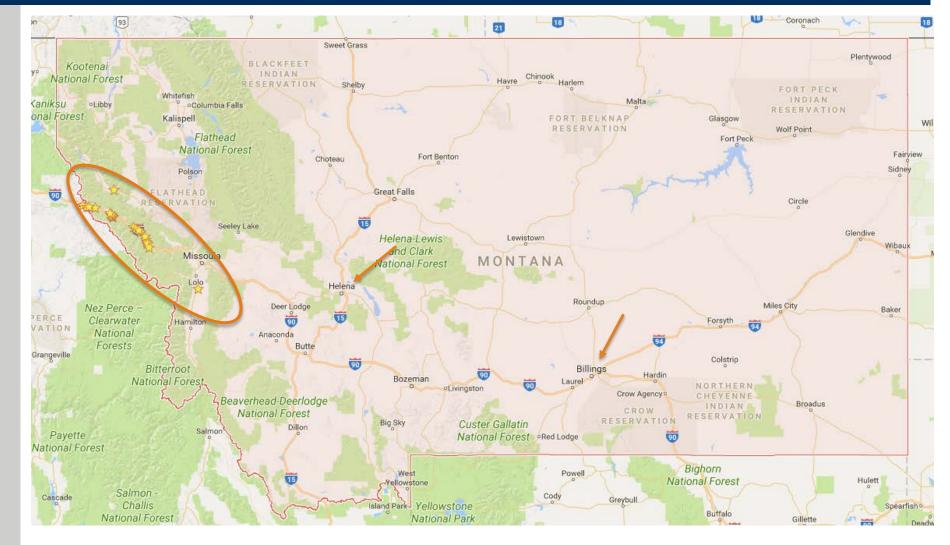
Project Background – Document Review

Outline

- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

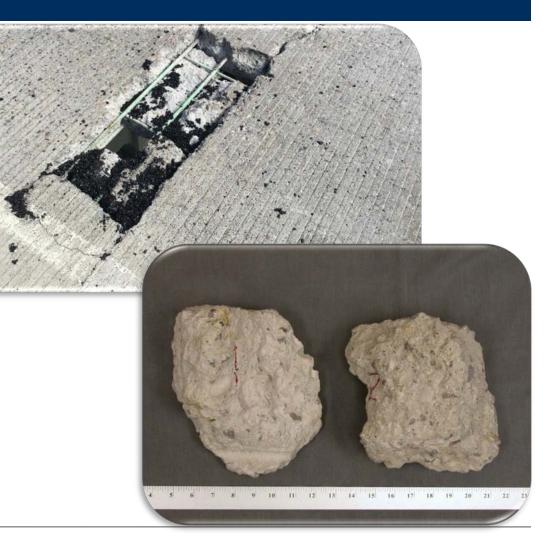
- Document Review 22 bridges, most in western MT
- Problematic bridges were most commonly re-decks
- Concrete mixes varied:
 - Cement; cement/fly ash; cement/fly ash/ silica fume
 - W/cm from 0.36 to 0.40
 - Air entrained
- Decks constructed by many different contractors
- Construction types varied: prestressed beams, welded plate girders, varying span lengths, varying girder spacing, etc.

Project Background – Document Review


Outline

- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Total deck thicknesses varied from 6 ½ to 9 inches
- All of the re-decks included epoxy coated reinforcing steel
 - The typical transverse spacing was 6 inches for both top and bottom mats - #5s
 - Longitudinal spacing was typically 1' 6" in top mat and 6 inches in bottom mat - #4s.
- Top cover is typically 2 3/8 inch
- Bottom cover is typically 1 inch


Project Background - Bridge Locations

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Project Background – Preliminary Lab Studies

- Concrete chunks were retrieved from MDT – fallen from LZ
- Based on photographs and information provided by MDT – WJE's original hypothesis - materials deterioration
- WJE performed preliminary petrographic analyses and chemistry
- Focus on any material related distress

Project Background – Preliminary Lab Studies

Project Background – Preliminary Evaluations

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- No signs of internal distress (ASR, Freeze/Thaw, chemical attack, etc.)
- Aggregate quality good
- W/cm adequate
 - High air content 9 to 12 %
 - White glaze on steel imprint and fractured surfaces
 - Consistent with leaching of the cement paste
- Weak paste-to-aggregate bond
- No direct contributing cause(s) to the cracking/deck penetration

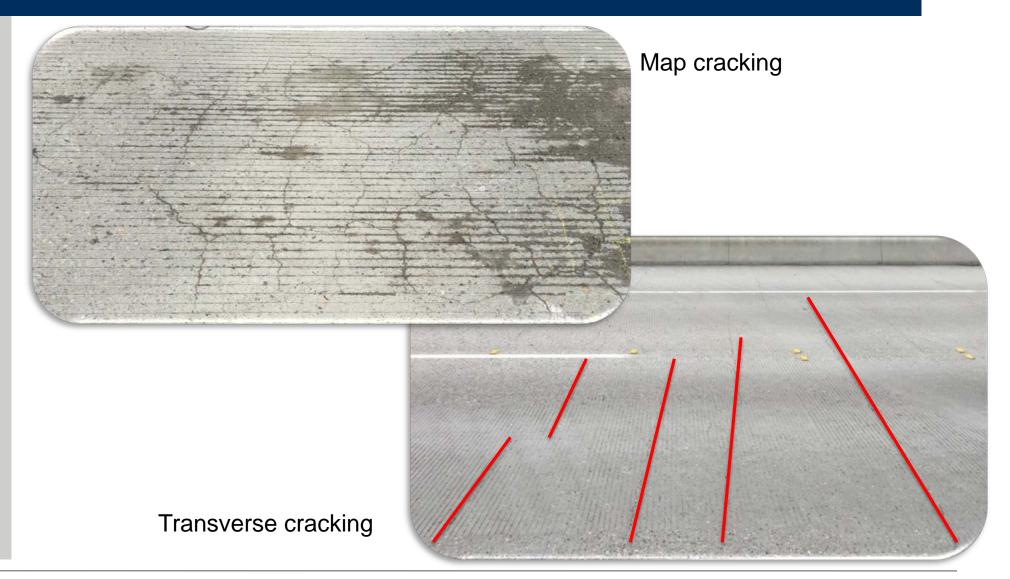
Field Investigation

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

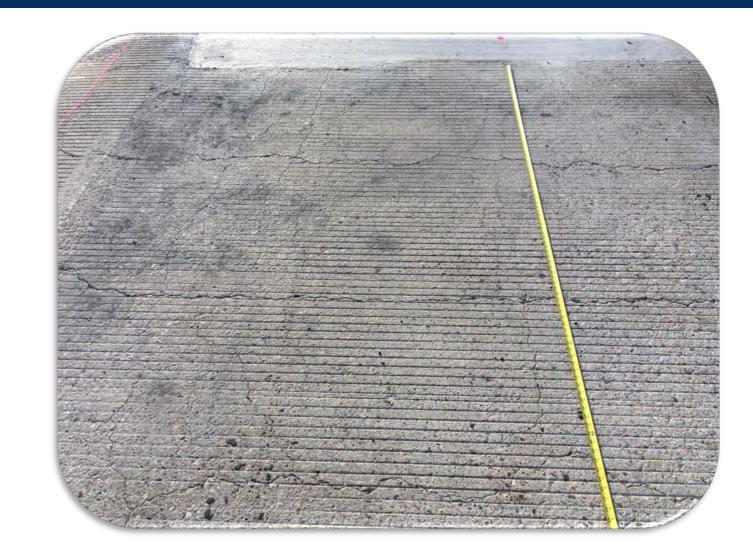
Field Investigation

- Detailed investigation of four bridges
 - Crack mapping
 - Delamination survey
 - Infrared thermography
 - Drone (photographs, thermographic imagery, and video)
 - Ground penetrating radar
 - Concrete coring
 - Documentation performed in Plannotate
- Comparative investigations of eight additional bridges

Field Investigation - Bridge Locations

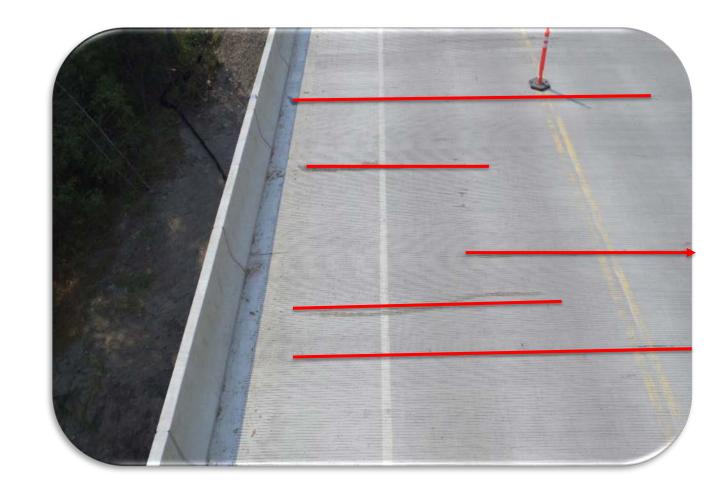

Bridge Location	Year of Construction (Reconstruction)	Specified Deck Thickness	Transverse Bar Spacing: Top and Bottom Mats	Longitudinal Bar Spacing: Top Mat	Longitudinal Bar Spacing: Bottom Mat	
Florence-East, MP 10.640	2014	8"	7 1/4"	1'-6"	7 3/8"	
Lozeau-Tarkio, MP 57.472 EB	1967 (2011 - redeck)	7 1/4" to 8"	7" or 7 1/2"	1'-6"	7 1/2"	
Lozeau-Tarkio, MP 58.550 EB	1967 (2011 - overlay)	7 1/4" to 8" (+)	6" or 10 1/2"	1'-3" or 1'-8"	5" or 6"	
Lozeau-Tarkio, MP 58.550 WB	1967 (2011 - redeck)	7 1/2" to 8 1/4"	7" or 7 3/4"	1'-6"	7" or 7 1/2"	
Lozeau-Tarkio, MP 57.472 WB	1967 (2011 - redeck)	7 1/4" to 8"	7" or 7 1/2"	1'-6"	7 1/2"	
Henderson-West, MP 22.013	1980 (2007 - redeck)	7 1/2"	5 3/4"	1'-5 3/4"	6 1/8"	
Henderson-East, MP 25.393	1980 (2008 - overlay)	7" to 7 3/4"	5", 5 3/4", or 6 1/4"	1'-6"	5", 6", or 7"	
Henderson-East, MP 24.603	1980 (2008 - redeck)	6 5/8"	6 1/8"	1'-5 3/4"	6"	
Henderson-East, MP 23.325	1979 (2009 - redeck)	8 1/4"	5"	1'-5 3/4"	3 1/2"	
Superior Area, MP 49.397 EB	1966 (2010 - redeck)	7 1/2" to 8 1/4"	6 1/4" or 7"	1'-6"	6 7/16" or 7 11/16"	
Superior Area, MP 49.397 WB	1960 (2011 - redeck)	6 3/4" to 7"	6" or 6 1/2"	1'-6"	4 1/4" or 7 1/8"	
Thompson River, MP 55-56	2015	9"	6 1/4" (top) 9 3/4" (bottom)	1'-6"	9"	

Field Investigation – Types of Cracking


- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

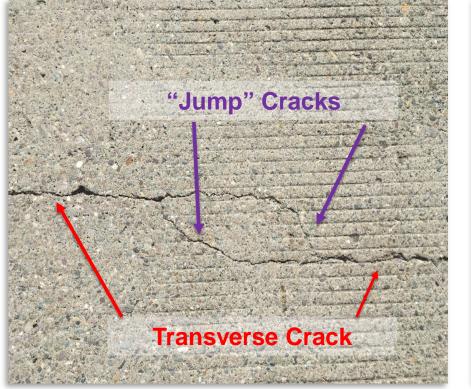
- Thermal and Stress
 Modeling
- Recommendations
- Why?



Field Investigations – Transverse Cracking

Field Investigation – Transverse Cracking

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?


Transverse cracking

Field Investigation – Transverse Cracking

Transverse cracking - Underside

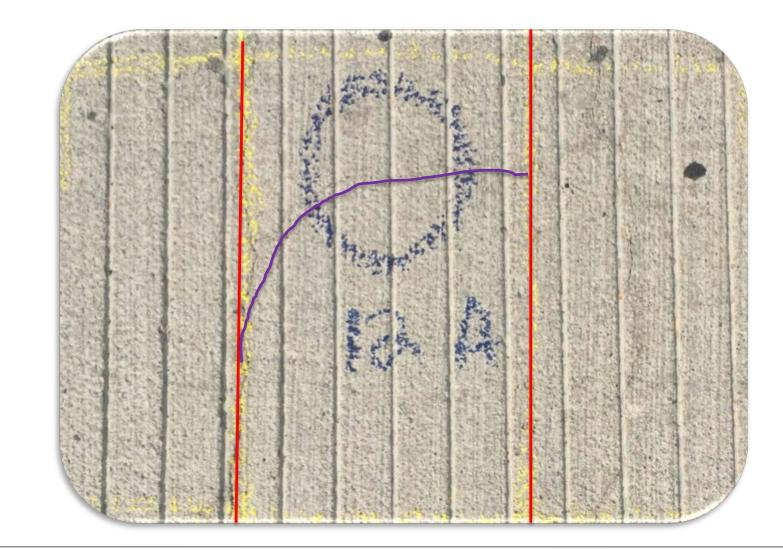
- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

"Jump" cracking

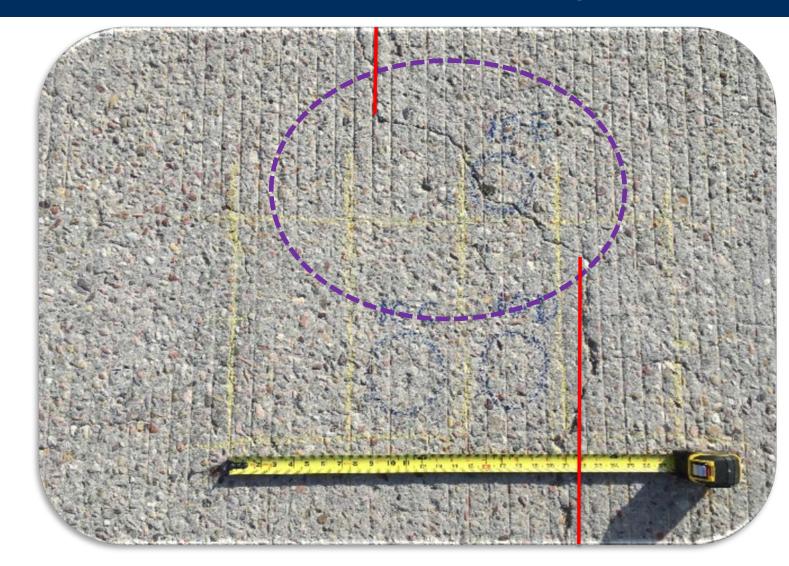
Hypothesis on crack progression:

- Outline
- Project Background

1.


- Field Investigation
- Laboratory
 - **Evaluations**
- Thermal and Stress Modeling
- Recommendations
- Why?

- Transverse cracks develop, likely early Transverse cracks progress over time 2.
- Closely-spaced transverse cracks form "jump" cracks 3.
- Continued volumetric movement and traffic loading -4. widen and ravel transverse and "jump" crack
- Deck penetrations may develop at "jump" cracks with the 5. right conditions:
 - Deck penetrations more prone to occur with top and bottom mats aligned
 - The more closely spaced the transverse cracks, the more likely deck penetrations will occur
 - Driving lanes and under wheel paths more susceptible

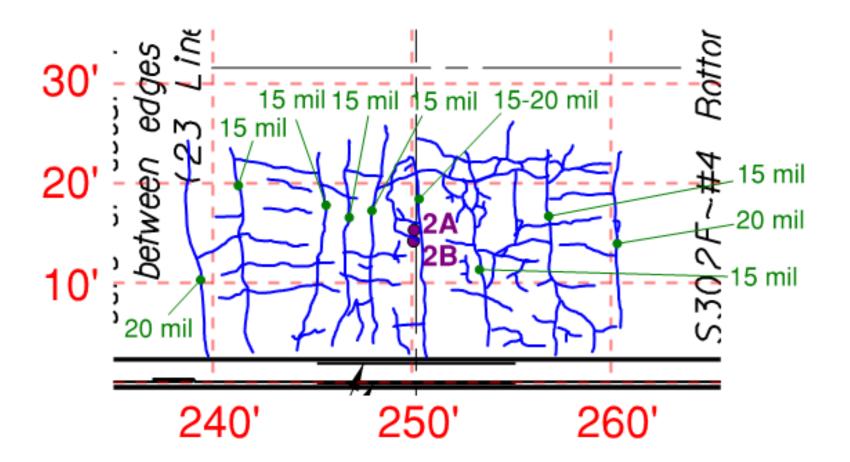

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Field Investigation – Deck Penetration



Field Investigation – Crack Mapping

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

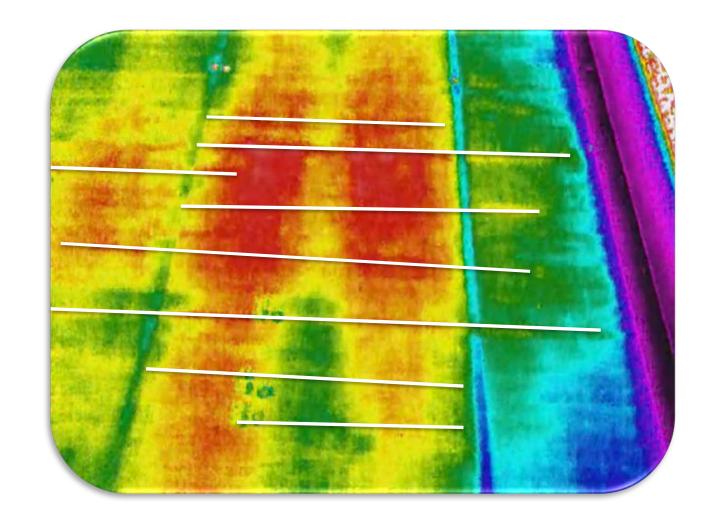
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Field Investigation – Cracking

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Transverse crack spacing varied from 2 to 4 feet on most bridges
 - More frequent then typical
- Transverse cracks predominately over transverse bars (GPR)
- Width of transverse cracks were typically 15 to 25 mils
- Plastic shrinkage cracking noted on some decks, most severe on Florence-East MP 10.640 - 1 year old and contained silica fume concrete.
- Longitudinal cracking noted, but not significant

Field Investigation – Other Observations


- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Very little delamination noted on any of the bridges
 - Based on chain dragging and infrared images of representative areas
- Deck overlays appear to be performing well
 - 3 of the inspected bridges had overlays (as opposed to redecks)
 - Much less cracking transverse cracking 5 to 8 feet apart
 - Very little delamination noted
 - Overlays appeared to be cementitious/silica fume mix

Field Investigation – Drone Photographs

Field Investigation – Infrared Thermography

Field Investigation – Infrared Thermography

Field Investigations – Deck Temperatures

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

Concrete deck surface and underside temperatures were measured

- Surface temperatures varied from 42 F to 104 F
- Underside temperatures varied from 40 to 58 F
- Very high temperature swings! Fairly unique to Montana
- Relevant to subsequent thermal analysis and modeling

Field Investigation – GPR

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Bridge	Range	Depth of Slab (inch) ¹		Top Transverse Bar Location (inch)			Bottom Transverse Bar Location (inch)					
-		Spec.	Est.	Meas.	Spec.	Est.	Meas.	Spec.	Est.	Meas.		
1	Entire length	8	7 3/4	8 1/4	2 3/8	2 1/2	2 1/2, 2 5/8	6 3/8	-	7 1/8, 6 5/8		
2	0' to 117'-3"	7 1/4	-	-	2 3/8	-	-	5 5/8	-	-		
	117'-3" to 198'-9"	7 3/4	-	7 5/8	2 3/8	-	2 1/2	6 1/8	-	6 1/4		
	198'-9" to 296'	8	7 1/8		2 3/8	2 1/8	-	6 3/8	-	-		
3	Overlay											
4	Not measured											
5	Not measured											
6	Entire length	7 1/2	7	-	2 3/8	2 1/4	2 5/8	5 7/8	-	-		
7	Overlay											
8	Not measured											
9	Not measured											
10	0' to 75'	8 1/4	-	-	2 3/8		-	6 5/8	-	-		
	75' to 725'	7 1/2	7 1/2	-	2 3/8	2 3/4	-	5 7/8	-	6 3/8		
	725' to 800'	8 1/4	-	-	2 3/8	-	-	6 5/8	-	-		
11	0' to 75'	7	_	-	2 3/8	_	_	5 3/8	-	-		
	75' to 725'	6 3/4	6 1/4	-	2 3/8	2 1/8	2 5/8	5 1/8	4 7/8	-		
	725' to 800'	7	-	-	2 3/8	-	-	5 3/8	-	-		
12	Entire length	9	8 1/4	-	2 3/8	2 1/2	_	7 3/8	-	-		

Field Investigations – Concrete Cores

Concrete Core Extraction

- A total of 43 cores were extracted from 8 bridges
- Cores were extracted over "jump" cracks, transverse cracks, and no cracks
- Tried to capture progression of cracks
- Sampled from decks with straight cement and SCMs
- Sampled from two overlay bridges
- Varying severity of transverse cracks

Outline

Laboratory

Modeling

Why?

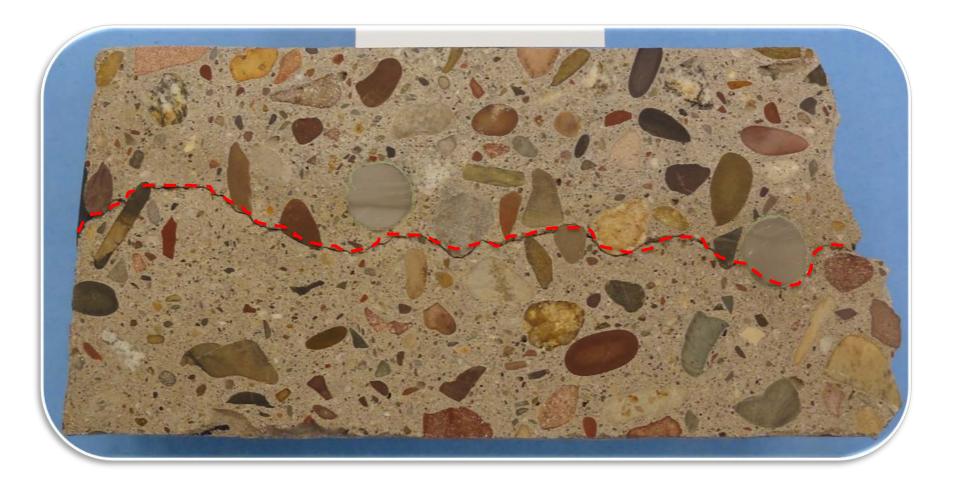
Evaluations

Project Background

Field Investigation

Thermal and Stress

Recommendations


Laboratory Evaluations

- Outline
- Project Background
- Field Investigation
- Laboratory
- **Evaluations**
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Laboratory Evaluations

- Petrographic Analyses (ASTM C856)
- Physical Properties
 - Compressive Strength (ASTM C42)
 - Splitting Tensile Strength (ASTM C469)
 - Thermal property evaluation (COTE)
- Others (Chloride ion content, x-ray diffraction, SEM)

Laboratory Evaluations - Petrography

Laboratory Evaluations - Petrography

Laboratory Evaluations - Petrography

- All transverse and "jump" cracks appeared to have initiated very early – cracks propagate around aggregates
- No signs of internal distress
- Air void system is good for freeze/thaw durability
 - Excessively high on some cores 12%
- Aggregates are sound
- W/cm ratios were adequate, occasionally slightly elevated

Laboratory Evaluations – Physical Properties

- Compressive strength
 - 5,090 to 7,370 psi (specified 4,500 psi)
- Modulus of Elasticity
 - 3.3 to 4.5 x10⁶ psi
- Splitting tensile strength
 - 600 to 770 psi
- Coefficient of thermal expansion
 - 3.6 to 5.0 x 10⁻⁶

Thermal and stress modeling on three bridges

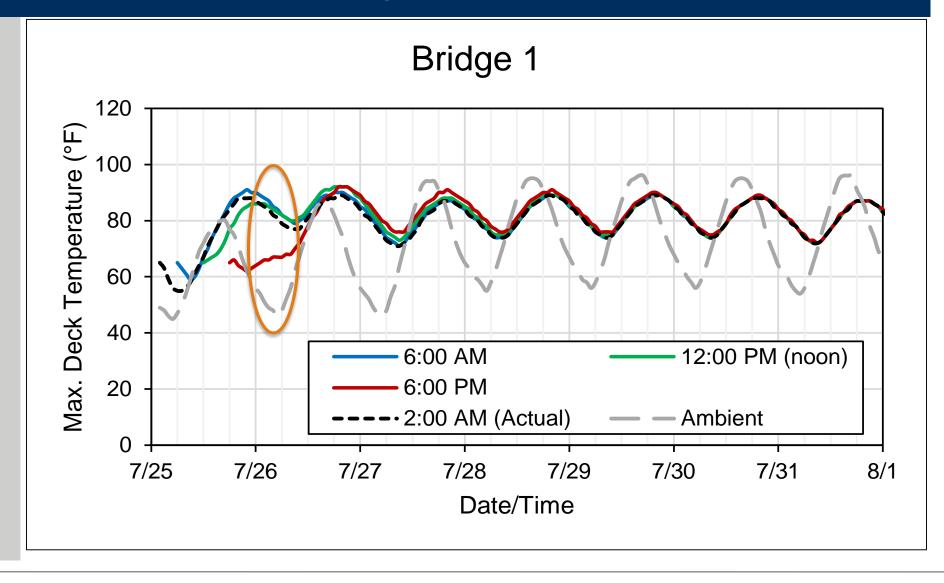
- Temperature model: ConcreteWorks
- Stress model: Mathcad tool based on Zuk (1961)¹

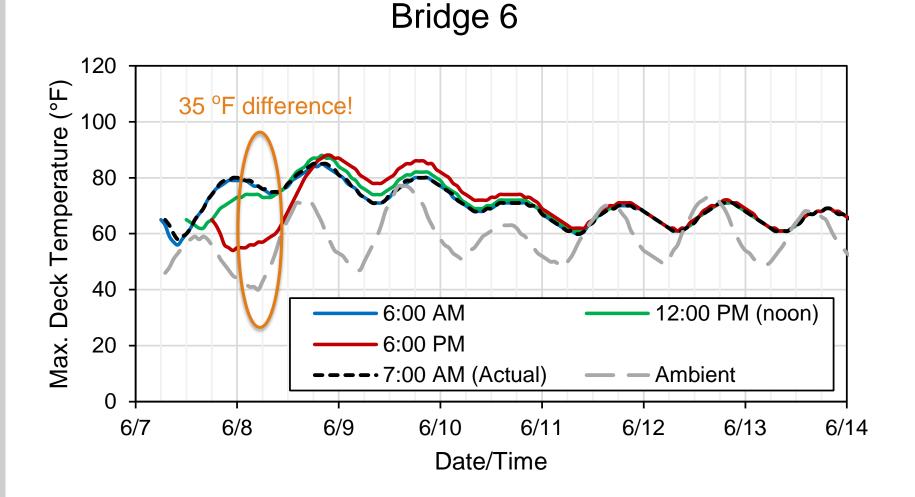
Field Investigation

Project Background

Laboratory

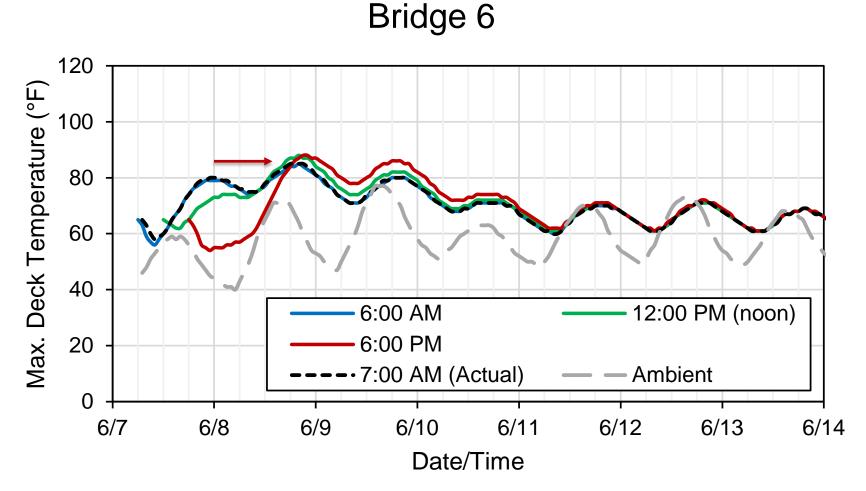
Outline


- Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?


- Why?
 - Have a better understanding f early age temperature changes and gradients
 - Have a better understanding of early age stress
 - Sensitivity analysis most important variables
 - Results to help guide recommendations

¹Zuk, W. "Thermal and Shrinkage Stresses in Composite Beams," *Journal of the American Concrete Institute*, (1961): 327-340.

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?


- Used ConcreteWorks to simulate peak temperature-time histories for 3 bridge decks
 - Deck geometry based on drawings
 - Heat generation simulated based on mix designs and cement compositions
 - Ambient temperature, wind speed, ans solar radiation based on historic records (NCDC)
 - Assumed placement temperature of 65 degrees F based on available batch ticket information
 - Varied placement times

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

WJE

Placing concrete in late afternoon shifts peak temperature difference to Day 2 or 3.

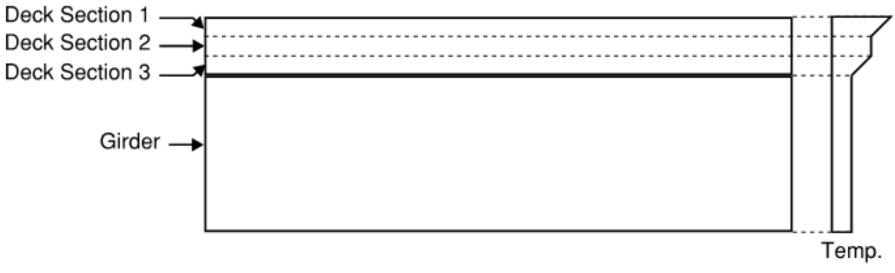
Project Background

- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Outline
- Project Background
- Field Investigation
- Laboratory


Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Stress analyses were performed using Mathcad, based on first-principles model by Zuk (1961)
 - Developed for composite bridge decks
 - Calculate free strain in each segment due to all volume changes (temperature, shrinkage, etc.
 - Calculate stresses generated by compatibility along interfaces

Zuk, W. "Thermal and Shrinkage Stresses in Composite Beams," *Journal of the American Concrete Institute*, (1961): 327-340.

Modifications:

Creep was implicitly modeled by reducing the elastic modulus of concrete

Sensitivity Analysis

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
- Modeling
- Recommendations
- Why?

- Autogenous shrinkage
- Drying shrinkage
- Temperature changes in deck and girder
- Compressive strength of deck concrete
- Thickness of deck
- Girder spacing

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

Sensitivity Analysis: Key Findings

- High sensitivity to tensile stresses caused by early-age temperature drops
- Stresses due to thermal gradients (e.g., cooling of deck surfaces) are greater magnitude than stresses due to uniform temperature changes
- Strains due to temperature generally larger than strains due to autogenous shrinkage for bridges investigated
- Drying shrinkage may be significant at later ages

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Simulations also performed for "realistic" temperature distributions
 - Assumed top 1/3 of deck is cooled 10 degrees F relative to interior
 - Simulated tensile stresses reached up to 130 psi at 3 days (after cooling)
 - Steeper substantial gradients may have existed in actual deck
 - Tensile capacity of the concrete may be exceeded by "realistic" thermal and shrinkage effects
 - Simulated stresses generally correlated with observed crack severity

Conclusion

Outline

- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Transverse cracks are initiating at early ages

- Driven by early age temperature gradients
- Cracks continue to propagate
- "Jump" cracks occur with tightly spaced transverse cracks
 - Deck penetrations occur under right conditions
 - Deck penetrations more prone to occur with top and bottom mats aligned
 - The more closely spaced the transverse cracks, the more likely deck penetrations will occur
 - Driving lanes and under wheel paths more susceptible

Recommendations

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Goals and Desired Outcomes:

- Reduce the potential for early age transverse cracking/ reduce frequency
- Reduce the potential for plastic shrinkage cracking (lower priority)
- Increase service life of bridge decks
- Decrease maintenance costs
- Practical and reasonable approach to these recommendations

Recommendations

How do we accomplish these goals?

- Reduce early age thermal stresses
 - Reduce autogenous shrinkage
 - Reduce the potential for early age and long term drying shrinkage
 - Maintain low permeability concrete
 - Maintain durability and service life
 - Work with MDT to achieve practical implementation

Outline

Project Background

Field Investigation

Thermal and Stress

Recommendations

Laboratory

Modeling

Why?

Evaluations

Placement Times

- Outline
- Project Background
- Field Investigation
- Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Move placement times to afternoon
 - Based on modeling, late afternoon likely best
- Prevents peak hydration temperatures to occur during peak ambient temperatures
- Moves peak concrete temperature to 2 to 3 days later concrete has higher tensile strength
- Peak concrete temperature aligns with cooler night temperatures

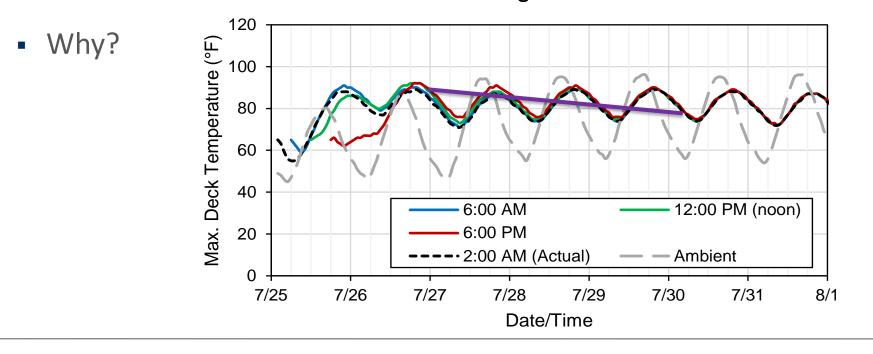
Curing

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Immediately fog mist placements until wet curing media is in place
- Contractor to measure evaporation rate
- Apply wet-curing methods immediately after finishing
 - Pre-Wet burlap, cotton blankets, but no plastic!

• Why is this important?

Curing


- Outline
- Project Background
- Field Investigation

Laboratory

Evaluations

- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Monitor in-place concrete temperatures: at multiple depths and beginning/end of placement
- Apply insulating blankets immediately after peak hydration Bridge 1

Curing

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- When concrete temperatures are within 5°F of ambient and vertical temperatures through deck thickness are uniform remove all curing
- Minimum of 72 hours old (or 96 hours old if concrete contains silica fume), remove all curing and allow deck to dry.
- After the surface has dried, white-pigmented curing compounds may be applied.

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

Decrease plastic concrete temperatures

- Recommend maximum plastic temperature of 80F, preferably lower
- Work with suppliers to help reduce concrete temperatures
- Sprinkling aggregates, shading, chill water, adding ice, etc.

Mixture Proportions Recommendations

- Limit silica fume replacement to 5%
- Specify w/cm between 0.42 and 0.45
- Limit cementitious material contents to 600 lb./yd³ or less
- Optimized gradation and crushed aggregates

• Why are these important?

Outline

Project Background

Field Investigation

Thermal and Stress

Recommendations

Laboratory

Modeling

Why?

Evaluations

Design Considerations

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Increase design thickness of decks to 8 inches minimum
- Modify specifications to require staggering of top and bottom transverse reinforcing mats

• Why are these important?

Why are we still having these problems?

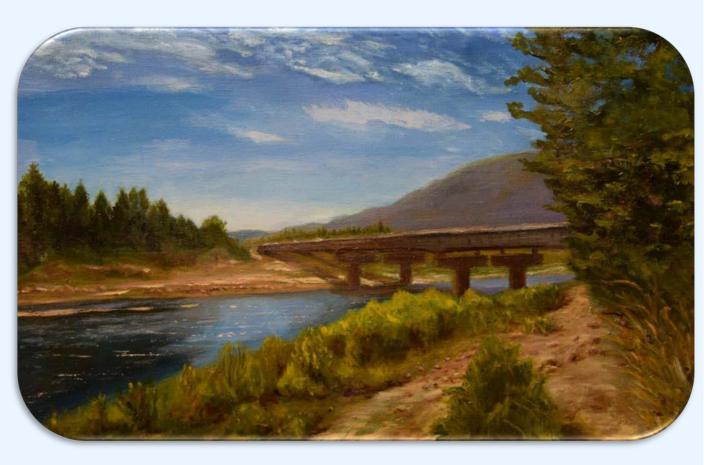
- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 - Modeling
- Recommendations
- Why?

- Trend has been to lower the water to cementitious ratio, add SCMs (HPC), and control total cementitious content:
 - Lower water and chloride permeability and increase chloride resistance = increased durability
 - Lower drying shrinkage = lower transverse cracking
 - Increase service life
 - However, bridges can still crack significantly!
 - No longer have intended service life and long durability

Why are we still having these problems?

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 - Modeling
- Recommendations
- Why?

- Compared to 25 years ago, the potential for volume change has increased: increase in cement fineness, C3A, and alkalis – schedule driven
- Too low of w/cm is not better
 - Autogenous shrinkage
- Creating low drying shrinkage mixes may not be sufficient – thermal/autogenous can play a primary role in early age cracking
- HPC mixes require critical attention to early age curing
- However, longer wet-curing periods increase potential for transverse cracking!


FinalThoughts

- Outline
- Project Background
- Field Investigation
- Laboratory
 Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- Awareness/education on current cement characteristics and implications: fineness
- Keep our w/cm around 0.42
- Use of SCMs are recommended, keep moderate
 - Limit total cementitious content
- Curing, curing, curing!

Special Thanks!

- Matt Needham MDT
- Paul Bushnell MDT
- Paul Krauss WJE
- Elizabeth Nadelman WJE

Questions?

Thanks for very much for the opportunity!

Implementation

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

- WJE's Recommendations implemented on 3 new bridge decks since early 2017
 - MDT reports limited transverse cracking. Typically over bents, if observed.
 - WJE briefly inspected one new deck placed in the Helena area (built in summer of 2017), approximately three weeks after placement – transverse cracks were difficult to find (very tight) and spaced far apart
 - Future inspections and assignments are needed

Recommendations

- Outline
- Project Background
- Field Investigation
- Laboratory
 - Evaluations
- Thermal and Stress
 Modeling
- Recommendations
- Why?

