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Motivation and Objective: Soil Conditions in Montana
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Motivation and Objective: Soil Conditions in Montana
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The average soil profiles in different regions have been frequently observed to
contain Gravelly soils with Silt and Clay contents



Challenge With Gravelly Soils: Conventional in-situ Penetration Tests




Particle size to Penetrometer Scaling

»The characterization of coarse-grained gravelly soils is
difficult (Dejong 2021).
» Sampling and laboratory testing difficult due to
particle size, disturbance, and sample
reconstitution issues.

» In-situ characterization difficult due to particle-to-
probe size effects.
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In-situ Strength Estimation of Gravelly Soils

Conventional in-situ penetration tests do not
perform reliably.

The presence of large particles can
compromise the penetration mechanism of
the SPT and CPT, resulting in artificially
elevated measures of penetration
resistance.

Percent gravel, maximum particle size,
GSD, and particle hardness all influence
SPT N value.

Estimated strength parameters for
foundation design will be overestimated.

Kulhawy and Chen (2007)
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In-situ Strength Estimation of Gravelly Soils

Conventional in-situ penetration tests do not

perform reliably.
The presence of large particles can

compromise the penetration mechanism of

the SPT and CPT, resulting in artificially
elevated measures of penetration
resistance.

Percent gravel, maximum particle size,
GSD, and particle hardness all influence
SPT N value.

Estimated strength parameters for

foundation design will be overestimated.

Kulhawy and Chen (2007)
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Why do we care?



Aging Infrastructure

Montana has 5,200 bridges and culverts maintained by the Montana Department of Transportation (MDT).
On average, state-owned bridges are 50 years old with locally owned bridges averaging 45 years old.

As old bridges are repaired and new bridges are being built, it is important to consider challenges with
Gravelly soils which are often used as bearing layer for foundation design.

Age of Montana Bridges

700

600

500
300

200
m|I|I| AFEF
i

09 10-19 2029 3039 4049 50-59 6069 70-79 808 9099 100+

o

B Locally Owned B State Owned




Seismicity In Montana

Major Quaternary fault database for
western Montana (MBBG)

***0Only Mission Fault is Included in National
Selsmlc Hazard Model (NSHM)
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Can Gravelly Soil Liquefy During an Earthquake?

RWTH Aachen University
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Gravel Liguefaction and Its Effects on Infrastructure
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Gravel Liguefaction and Its Effects on Infrastructure
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Gravel Liquefaction and Its Effects on Infrastructure

Case histories involving liguefaction of gravelly soil
(Rollins et al. 2022)

Earthquake Year M, Reference

Mino-Owari, Japan 1891 7.9 Tokimatsu and Yoshimi (1983)

San Francisco, California 1906 8.2 Youd and Hoose (1978)

Messina, Italy 1908 7.1 Baratta (1910)

Fukui, Japan 1948 7.3 Ishihara (1985)

Alaska, USA 1964 92 Coulter and Miglaccio (1966), and McCulloch and Bonilla (1970)
Haicheng, China 1975 7.3 Wang (1984)

Tangshan, China 1976 7.8 Wang (1984)

Friuli, Italy 1976 6.4 Sirovich (1996a, b), and Rollins et al. (2020)
Miyagiken-Oki, Japan 1978 7.4 Tokimatsu and Yoshimi (1983)

Montenegro 1979 6.9 Kociu (2004)

Borah Peak, Idaho, USA 1985 6.9 Youd et al. (1985), Andrus (1994), and Harder and Seed (1986)
Armenia 1988 6.8 Yegian et al. (1994)

Limon, Costa Rica 1991 77 M. = 5.810 9.2 Franke and Rollins (2017)

Roermond, Netherlands 1992 5.8 w Maurenbrecher et al. (1995)

Hokkaido, Japan 1993 7.8 Kokusho et al. (1995)

Kobe, Japan 1995 7.2 Kokusho and Yoshida (1997)

Chi-Chi, Taiwan 1999 7.8 Chu et al. (2000), and Lin et al. (2004)

Kocaeli, Turley 1999 7.6 Bardet et al. (2000)

Wenchuan, China 2008 7.9 Cao et al. (2011, 2013)

Tohoku, Japan 2010 9.0 Tatsuoka et al. (2017)

Cephalonia Island, Greece 2012 6.1 Nikolaou et al. (2014), and Athanasopoulos-Zekkos et al. (2019, 2021)
Iquigque, Chile 2014 8.2 Rollins et al. (2014), and Morales et al. (2020)
Muisne, Ecuador 2016 7.8 Lopez et al. (2018)

Kaikoura, New Zealand 2016 7.8 Cubrinovsky et al. (2017)

Durres, Albania 2019 6.4 Pavlides et al. (2020)

Petrinja, Croatia 2020 6.4 Amoroso et al. (2021)

We cannot rule out the possibility of liguefaction of Gravelly soil

12



In-situ Strength Estimation of Gravelly Soils: Earthquake and Dynamic Loading

MDT Geotechnical Manual: Liquefaction Evaluation

19.4.2 Liquefaction Potential

Liquefaction occurs when loose, cohesionless soils located below the groundwater table
undergo strong vibratory loading. Porewater pressures within the soil increase as the loose
material tends to densify. Soil liquefaction occurs when the increase in porewater pressure
equals the effective stress in the soil. In this state, the soil loses shearing strength, potentially
leading to bearing failures or slope instability. After the earthquake ground shaking stops, the
excess pore pressures dissipate, resulting in settlement. The settlement can effect roadways,
retaining walls, bridges, culverts, spread footings and potentially cause downdrag on piles
located in the settling soil.

Liguefaction analysis usually begins with a preliminary screening that evaluates three factors to

rule out liguefaction. A detailed evaluation of liquefaction potential is not required if one or more
of the following conditions occurs at the site:

. The estimated maximum groundwater level at the site is determined to be deeper than
75 ft (25 m) below the existing ground surface or proposed finished grade, whichever is
deeper.

. The subsurface profile is characterized as having a minimum SPT resistance, corrected

for overburden depth and hammer energy (N1)so. Of 30 blows/ft (30 blows/0.3 m), or a

cone tip resistance g, of more than 160 tsf (15 MPa), or if the bedrock is present to the
ground surface.

. The soil is clayey, as defined by the recommendations given by |driss and Boulanger
(2006) or Bray and Sancio (2006).
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Difference in Cyclic Strength between Gravels and Sand

Based on the updated literature, Gravelly soils has lower cyclic
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Percent Passing (%)

Permeability of Gravelly soils Controls Cyclic Strength
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Example Case Study: Borah Peak Earthquake 1983, Idaho, Magnitude M,,= 6.9
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Methodology (Jana and Stuedlein 2025)

Determination of critical shear strain to initiate liquefaction

Rollins et al. (2022; REA22) developed a CRR model using 174 case histories of gravelly

soils
3881077 V3 — 16 M, — Inigt 20
CRR = expif; -
Pt 4.95
—7.v3 1-Pp, ,
3.88:107"-V53 — 1.6-My, — In( Py, ) \/;
Y = exp( 4.95 ) - [ W
Yel 0.84
1+ :
0.0046-(Cu)—0.197,(0_6)0-52
a Ouo " Tg
Ye = 0.65 - ( max> . v 4
J Gmax ’ (—C>
Gmax
Oyo " Ta

[ Amax .
Ymax = g G,
Gmax ) Gmax

_ p'f'Neq'F'(Vc_ytp)S
= S
1+f'Neq'F'(Vc_th)

]

CRR- Cyclic Resistance Ratio

V41 - over burden corrected

Shear wave velocity

Y- Critical shear strain

P; - probability of liquefaction

a,,- Effective stress

M,, - Magnitude of earthquake

C,, - Coefficient of uniformity of soil

P, f, s = Fitting parameters

f = Dimensionality of loading
Ng; = Number of equivalent cycle
Yep = Threshold shear strain

F = Controls the rate of r,

FC = Fineness content
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Borah Peak Earthquake 1983, Idaho
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Concluding Remarks

» Conventional in-situ penetration tests do not perform reliably for Gravelly soils.
» If using SPT, suggest using N per inch reading.

» Shear wave velocity could provide insight of static and dynamic response of Gravelly Soills.
» Suggest using Dynamic Penetration Test (DPT) for Gravelly soills.
» Our newly developed method could provide simplified system response of deposit.

—
o S

DPT: Less Expensive

BPT:. Very Expensive
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Standard Penetratio n Test

Large Gravel Particles
cannot be sampled
using SPT and N value
will be affected by
Gravel.

If SPT is the only
option measure N
value for every inch
penetration.

Important Notes

« Advantages:

* Relatively quick Test, simple,
inexpensive, widely used

* Provides a sample!!

Can use in dense materials

» Disadvantages

» Result are affected by many variables
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