Safety Evaluation of Sinusoidal Centerline Rumble Strips

Task 7: Summary of "After" Period Data

Prepared by:

Eric T. Donnell
Professor

Vikash V. Gayah

Professor

Prakash PoudelDoctoral student

Department of Civil and Environmental Engineering
The Pennsylvania State University
208 Engineering Collaborative and Research and Education Building (ECoRE)
University Park, PA 16802

Prepared for:

The Montana Department of Transportation

August 2025

TABLE OF CONTENTS

List of Tables	. iii
Disclaimer Statement	iv
Alternative Format Statement	iv
Background	1
Summary of roadway and crash data	1
Preliminary crash frequency model	8

LIST OF TABLES

Table 1. Summary of reported crash frequencies	2
Table 2. Summary of reported crash frequencies for sites treated with SCLRS, conventional CL	LRS
sites, and reference sites	5
Table 3. Summary of AADT	6
Table 4. Summary of shoulder rumble strip presence by year	6
Table 5. Summary of continuous variables in the dataset	7
Table 6. Summary of continuous variables in the dataset	8
Table 7. Coefficients from the negative binomial model for total crashes for reference group	9

Disclaimer Statement

This document is disseminated under the sponsorship of the Montana Department of Transportation (MDT) and the United States Department of Transportation (USDOT) in the interest of information exchange. The State of Montana and the United States assume no liability for the use or misuse of its contents.

The contents of this document reflect the views of the authors, who are solely responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or official policies of MDT or the USDOT.

The State of Montana and the United States do not endorse products of manufacturers.

This document does not constitute a standard, specification, policy or regulation.

Alternative Format Statement

Alternative accessible formats of this document will be provided on request. Persons who need an alternative format should contact the Office of Civil Rights, Department of Transportation, 2701 Prospect Avenue, PO Box 201001, Helena, MT 59620. Telephone 406-444-5416 or Montana Relay Service at 711.

BACKGROUND

The objective of the Task 7 deliverable is to summarize the data collection activities and protocols that were used to develop the "after" period data to be used in the safety evaluation of sinusoidal centerline rumble strips. The "before" data collection efforts took place during Tasks 4 and 5 of the project, which involved compiling crash data, electronic roadway data, and supplemental data for the treatment and reference group sites. These activities were described in the Task 6 memorandum submitted to MDT for review.

The current memorandum summarizes after period crash/roadway data and provides a preliminary statistical model to predict crash frequencies on roadway segments without centerline rumble strips.

SUMMARY OF ROADWAY AND CRASH DATA

The dataset for this study consisted of 10,785 segments of two-lane, undivided rural roads with posted speed limits greater than 45 mph, representing a total length of 7,565.7 miles. In 2021, sinusoidal centerline rumble strips were installed on 490.4 miles (about 6.5%) of these roads. Thus, for the purposes of this project, the period from 2016 to 2020 (inclusive) is considered the "before" period and the period from 2022 to 2024 (inclusive) is considered the after period.

After period roadway and traffic data obtained from the Montana Department of Transportation (MDT) were merged with the segmented before-period dataset. The additional roadway and traffic variables included the presence of shoulder rumble strips, annual average daily traffic (AADT), and crash counts for the after period (2022–2024). All other roadway attributes—such as surface width, paved shoulder width, and geometric characteristics (e.g., horizontal curve radius, vertical grade)—were assumed to remain unchanged between the before and after periods. The research team confirmed that sites at which sinusoidal rumble strips were installed did not previously have centerline rumble strips during the before period. For certain segments, AADT values were missing for 2023 and 2024. These values were estimated by applying the average annual growth rate to the most recent year of AADT data found in the Montana DOT data files. Crash data for the years 2016–2024 were then merged with the roadway data using crash location information. Table 1 provides descriptive summary statistics of the annual crash frequencies for each target crash type during the before and after periods.

Table 1. Summary of reported crash frequencies

Description	Year	Mean	Standard Deviation	Min	Max	Average for respective before/after period
	2016	0.355	0.84	0	14	
	2017	0.386	0.898	0	13	
	2018	0.387	0.905	0	17	0.373
Total Crash	2019	0.357	0.84	0	13	
Frequency	2020	0.381	0.877	0	11	
	2022	0.369	0.899	0	15	
	2023	0.342	0.849	0	14	0.355
	2024	0.353	0.852	0	13	
	2016	0.097	0.344	0	5	
	2017	0.092	0.335	0	5	
	2018	0.088	0.332	0	5	0.091
Fatal and Injury	2019	0.084	0.319	0	5	
Crash Frequency	2020	0.093	0.333	0	4	
	2022	0.089	0.339	0	5	
	2023	0.086	0.333	0	5	0.088
	2024	0.089	0.331	0	5	
	2016	0.005	0.071	0	2	
	2017	0.005	0.075	0	2	
	2018	0.004	0.068	0	2	0.005
Head On Crash,	2019	0.004	0.065	0	1	
Total Frequency	2020	0.005	0.07	0	1	
	2022	0.005	0.071	0	2	
	2023	0.006	0.08	0	2	0.005
	2024	0.004	0.065	0	1	
	2016	0.004	0.061	0	2	
	2017	0.004	0.066	0	2	
	2018	0.003	0.06	0	2	0.004
Head On Crash,	2019	0.004	0.06	0	1	
Fatal and Injury Frequency	2020	0.004	0.065	0	1	
rrequericy	2022	0.004	0.06	0	1	
	2023	0.004	0.067	0	1	0.004
	2024	0.003	0.054	0	1	

Description	Year	Mean	Standard Deviation	Min	Max	Average for respective before/after period
	2016	0.008	0.091	0	1	
	2017	0.006	0.078	0	1	
	2018	0.006	0.08	0	2	0.007
Opposite Direction	2019	0.006	0.079	0	1	
Sideswipe, Total Frequency	2020	0.007	0.084	0	2	
rrequericy	2022	0.007	0.086	0	2	
	2023	0.008	0.092	0	2	0.007
	2024	0.007	0.086	0	3	
	2016	0.005	0.067	0	1	
	2017	0.002	0.048	0	1	
Opposite Direction	2018	0.003	0.054	0	2	0.003
Sideswipe, Fatal	2019	0.003	0.053	0	1	
and Injury	2020	0.002	0.042	0	1	
Frequency	2022	0.003	0.053	0	1	
	2023	0.003	0.058	0	2	0.003
	2024	0.002	0.042	0	1	
	2016	0.042	0.22	0	4	
	2017	0.05	0.242	0	3	
	2018	0.045	0.224	0	3	0.045
Off Road Left, Total	2019	0.042	0.217	0	3	
Frequency	2020	0.045	0.226	0	3	
	2022	0.045	0.228	0	5	
	2023	0.04	0.214	0	3	0.041
	2024	0.039	0.216	0	5	
	2016	0.019	0.142	0	2	
	2017	0.02	0.148	0	2	
Ī	2018	0.014	0.12	0	2	0.017
Off Road Left, Fatal	2019	0.015	0.127	0	2	
and Injury	2020	0.018	0.136	0	2	
Frequency	2022	0.017	0.132	0	2	
	2023	0.016	0.13	0	2	0.017
	2024	0.017	0.133	0	3	

Description	Year	Mean	Standard Deviation	Min	Max	Average for respective before/after period
	2016	0.104	0.363	0	4	
	2017	0.123	0.422	0	8	
Single Vehicle Run	2018	0.124	0.411	0	8	0.116
Off Road, Total	2019	0.111	0.383	0	5	
Frequency	2020	0.117	0.392	0	6	
	2022	0.12	0.417	0	8	
	2023	0.103	0.378	0	8	0.109
	2024	0.103	0.369	0	6	
	2016	0.045	0.221	0	4	
	2017	0.045	0.223	0	4	
Single Vehicle Run	2018	0.039	0.207	0	3	0.043
Off Road, Fatal and Injury Frequency	2019	0.039	0.207	0	4	
	2020	0.046	0.225	0	3	
	2022	0.042	0.215	0	3	
	2023	0.038	0.205	0	3	0.04
	2024	0.04	0.207	0	3	

Tables 2 presents the summary of target crash types separately for sites treated with SCLRS, sites having conventional CLRS, and sites having no CLRS (reference sites). The average crash frequencies for total crash and fatal and injury crashes are higher in the before-period than in the after-period across all three site categories, although the differences are relatively small. Further analysis will be carried out to evaluate whether the SCLRS treatment had a significant effect with respect to the reference sites and CLRS sites.

Table 2. Summary of reported crash frequencies for sites treated with SCLRS, conventional CLRS sites, and reference sites

Description	Pariod	SCLRS sites $(N = 6,488)$							Reference $(N = 47,5)$				
Description	renou	Mean	Standard Deviation	Min	Max	Mean	Standard Deviation	Min	Max	Mean	Standard Deviation	Min	Max
Total crash frequency	2016 – 2020	0.853	1.257	0	11	0.438	0.888	0	12	0.326	0.858	0	17
Total crash frequency	2022 – 2024	0.823	1.245	0	15	0.396	0.863	0	13	0.250	0.77	0	14
Fatal and injury crash frequency	2016 – 2020	0.196	0.475	0	3	0.103	0.351	0	5	0.081	0.319	0	5
ratai and injury crash frequency	2022 – 2024	0.189	0.463	0	4	0.093	0.337	0	4	0.068	0.304	0	5
Hand on smach. Total frequency	2016 – 2020	0.010	0.103	0	2	0.006	0.076	0	2	0.004	0.065	0	2
Head-on crash - Total frequency	2022 – 2024	0.009	0.093	0	1	0.006	0.081	0	2	0.004	0.059	0	1
Head-on crash - Fatal and injury	2016 – 2020	0.008	0.091	0	2	0.005	0.069	0	2	0.003	0.057	0	2
frequency	2022 – 2024	0.006	0.078	0	1	0.005	0.068	0	1	0.002	0.049	0	1
Opposite direction sideswipe -	2016 – 2020	0.015	0.124	0	2	0.008	0.087	0	2	0.006	0.079	0	2
Total frequency	2022 – 2024	0.014	0.117	0	1	0.008	0.089	0	2	0.006	0.081	0	3
Opposite direction sideswipe -	2016 – 2020	0.008	0.094	0	2	0.003	0.051	0	1	0.003	0.055	0	2
Fatal and injury frequency	2022 – 2024	0.005	0.073	0	1	0.003	0.053	0	1	0.002	0.046	0	2
Off-road left - Total frequency	2016 – 2020	0.091	0.314	0	3	0.052	0.246	0	4	0.040	0.21	0	3
On-road left - rotal frequency	2022 – 2024	0.086	0.326	0	5	0.045	0.226	0	3	0.032	0.192	0	5
Off-road left - Fatal and injury	2016 – 2020	0.035	0.195	0	2	0.020	0.143	0	2	0.016	0.129	0	2
frequency	2022 – 2024	0.034	0.190	0	2	0.017	0.132	0	3	0.014	0.12	0	2
Single vehicle run-off-road - Total	2016 – 2020	0.232	0.532	0	4	0.135	0.432	0	8	0.102	0.365	0	5
frequency	2022 – 2024	0.226	0.556	0	5	0.121	0.411	0	8	0.082	0.331	0	6
Single vehicle run-off-road - Fatal	2016 – 2020	0.087	0.306	0	3	0.049	0.231	0	4	0.038	0.206	0	4
and injury frequency	2022 – 2024	0.085	0.304	0	3	0.042	0.214	0	3	0.032	0.186	0	3

Tables 3 and 4 provide descriptive summaries of the AADT and shoulder rumble strip variables indicating their changes during the study period (2016 to 2024). The data indicates increases in the mean values of AADT and mileage of shoulder rumble strips between the before and after periods. Tables 5 and 6 present summaries of the continuous and categorical variables that were assumed to remain constant throughout the study period. For example, the surface width was assumed to remain the same throughout the analysis period.

Table 3. Summary of AADT

Description	Year	Mean	Standard Deviation	Min	Max	Average for before/after period
	2016	1272.8	1516.0	21	29017	
	2017	1270.1	1563.3	21	30978	
	2018	1285.4	1553.3	14	31412	1276.4
Average	2019	1311.3	1608.8	14	30509	
Annual Daily Traffic (AADT)	2020	1242.1	1537.8	1	13837	
Traine (AAD1)	2022	1342.6	1696.1	1	14969	
	2023	1389.4	1754.5	16	16058	1385.4
	2024	1424.2	1799.7	1	15962	

Table 4. Summary of shoulder rumble strip presence by year

Shoulder rumble strips	Year	Mileage	Percentage	Average for before/after period
	2016	5877.9 mi	77.70%	
	2017	5860.1 mi	77.50%	
	2018	5877.9 mi	77.70%	76.34%
No mumble strip	2019	5720.4 mi	75.60%	
No rumble strip	2020	5535.8 mi	73.20%	
	2022	5269.9 mi	69.70%	
	2023	5221.5 mi	69.00%	69.30%
	2024	5233.5 mi	69.20%	
	2016	1687.8 mi	22.30%	
	2017	1705.6 mi	22.50%	
	2018		22.30%	23.66%
Shoulder RS	2019	1845.3 mi	24.40%	
Snoulder KS	2020	2029.9 mi	26.80%	
	2022	2295.8 mi	30.30%	
	2023	2344.2 mi	31.00%	30.70%
	2024	2332.2 mi	30.80%	

Table 5. Summary of continuous variables in the dataset

Description	Mean	Standard Deviation	Min	Max
Surface Width, ft	29.54	5.72	19	74
Segment Length, mi	0.7	0.29	0.1	1
Paved shoulder width, ft	2.68	2.53	0	17
Posted speed limit, mph	68.04	4.87	50	70
No. of access points per mile	3.86	4.85	0	80
No. of intersections per mile	0.53	1.53	0	40
No. of horizontal curves per mile	1.02	1.91	0	20
Curve proportion, % (ratio of curve length to segment length)	12.82	22.3	0	100
Degree of curvature per mile	3.59	10.08	0	256.06
Average gradient (%)	0.6	0.5	0	6.56

Table 6. Summary of continuous variables in the dataset

Category	Mileage	Percentage
Fun	ctional classification	
Principal Arterial	2437.5	32.22%
Minor Arterial	2604.9	34.43%
Collectors	2516	33.26%
Local	7.3	0.10%
Cen	terline rumble strips	
No Rumble Strip	4138.6	54.70%
Centerline RS	3427.1	45.30%
Sinusoida	al centerline rumble strips	
No Sinusoidal Rumble Strip	7075.3	93.52%
Sinusoidal RS	490.4	6.48%
Pre	esence of curve type	
Reverse and compound curves ¹	37.1	0.49%
Reverse curve only	330.9	4.37%
Compound curve only	100.3	1.33%
Simple curve	2364.3	31.25%
No curve	4733.1	62.56%
Presence	ce of curve warning sign	
No curve warning sign	7266.8	96.05%
Curve warning sign	298.9	3.95%
Post	ed speed limit (mph)	
50	96.3	1.27%
55	367.9	4.86%
60	342	4.52%
65	357.5	4.73%
70	6402	84.62%

PRELIMINARY CRASH FREQUENCY MODEL

A negative binomial model for expected total crash frequency was estimated for reference segments (i.e., those without centerline rumble strips) using crash data from 2016–2024. Table 7 presents the model results.

_

¹ To identify reverse and compound curves, spacing criteria between successive curves used was 300 ft or less

Table 7. Coefficients from the negative binomial model for total crashes for reference group

Variable	Coefficient	Std.error	p.value
(Intercept)	-8.111	0.078	< 0.001
Natural logarithm of AADT	1.069	0.011	< 0.001
Natural logarithm of segment length in miles	0.926	0.02	< 0.001
Presence of shoulder RS (1 if true, 0 otherwise)	-0.223	0.026	< 0.001
No. of intersections per mile	0.026	0.005	< 0.001
No. of access points per mile	0.022	0.002	< 0.001
Average vertical grade, %	0.049	0.022	0.025
Degree of curvature per mile	0.01	0.001	< 0.001
Minimum radius 1000 ft or less (1 if true, 0 otherwise)	0.247	0.055	< 0.001
Presence of reverse or compound curve (1 if true, 0 otherwise)	0.068	0.041	0.096
Presence of curve warning sign (1 if true, 0 otherwise)	0.213	0.042	< 0.001
Surface width greater than 24 ft (1 if true, 0 otherwise)	-0.272	0.024	< 0.001
Observation in year 2017 (reference year 2016)	0.032	0.037	0.378
Observation in year 2018 (reference year 2016)	0.043	0.037	0.242
Observation in year 2019 (reference year 2016)	-0.067	0.037	0.07
Observation in year 2020 (reference year 2016)	0.058	0.037	0.115
Observation in year 2022 (reference year 2016)	-0.067	0.041	0.099
Observation in year 2023 (reference year 2016)	-0.142	0.041	< 0.001
Observation in year 2024 (reference year 2016)	-0.115	0.041	0.005

The results suggest that for the reference sites – with no centerline rumble strips - there were higher expected crash frequencies on segments with greater AADT, longer segment lengths, more intersections, more access points, steeper vertical grades, sharper curves (higher curvature per mile), and segments with curves having a minimum radius of 1,000 ft or less. On the other hand, expected crashes were lower on segments with shoulder rumble strips present, and surface width greater than 24 ft. These results are consistent with findings from existing roadway safety literature. Furthermore, for these reference sites, the expected crash frequencies for the before-period years (2017-2020) were generally not significantly different from the reference year 2016, with only 2019 and 2020 showing marginal significance. However, in the after period, significant differences in expected crash frequencies were observed from the baseline year 2016.