

Feasibility of Geothermal Energy for Bridge Deicing and Deck Cooling in Montana

Department of Civil Engineering

Mohammad Khosravi, Katey Plymesser, Kirsten Matteson, Neda Nazemi, Faraz Dadgostari

Introduction: Why Bridges

Introduction: Bridge Maintenance Issues in Cold Region

Introduction: Geothermal Bridge Deck Deicing

Geothermal bridge deck deicing systems transfer energy from the ground to concrete bridge decks through heat exchanger pipes

Sidewalk heating in operation (Eugster, 2007)

Conceptual diagram of the geothermal heat pump de-icing system (GHDS).

Habibzadeh-Bigdarvish et al. 2019

Motivation and Objective: Weather in Montana

Locations of MDT RWIS Sites

Motivation and Objective: Weather in Montana

Motivation and Objective: Ground Temperature in Montana

Ground Temperature Distribution in Montana

Motivation and Objective

Feasibility of the use of a Ground Source Heat Pump (GSHP) system

Corrosion due to De-icing salts Concrete bridge deterioration

Frost Action

Early-age cracking

Geothermal Bridge Deck Deicing: Research Methodology

Inlet Camera

Outlet
Strain Gauges

Model Scale
Experiments in SRL

Parametric Study and Sensitivity Analysis

Numerical Model

Development and Validation

Feasibility Analysis

Model Scale Experiments in SRL

Model Scale Experiments in SRL

Bridge Deck De-icing Thermal Movement

Frost Action
Theral Gradient

Early-age cracking

Model Scale
Experiments in SRL

Bridge Deck De-icing Thermal Movement Frost Action
Theral Gradient

Early-age cracking

Research Methodology: Numerical Model Development and Validation

Research Methodology: Numerical Model Development and Validation

Parametric Study and Sensitivity Analysis

Bridge Deck De-icing

Thermal Movement

Frost Action

Thermal Gradient

Parametric Study and Sensitivity Analysis

Bridge Deck De-icing

Thermal Movement

Frost Action

Thermal Gradient

Parametric Study and Sensitivity Analysis

Bridge Deck De-icing

Thermal Movement

Frost Action

Thermal Gradient

Parametric Study and Sensitivity Analysis

Bridge Deck De-icing

Thermal Movement

Frost Action

Thermal Gradient

Ground Source
Heat Pump
(GSHP) system for
Bridge Deck
Deicing

Without Geothermal System

With Geothermal System

Surface Prediction and Feasibility Analysis

TASK 04-01

Data Collection and Preprocessing

Ground Source
Heat Pump
(GSHP) system for
Bridge Deck
Deicing

Surface Prediction and Feasibility
Analysis

Surface Prediction and Feasibility Analysis

TASK 04-01

Data Collection and Preprocessing

Ground Source
Heat Pump
(GSHP) system for
Bridge Deck
Deicing

Base Model

Solar Radiation:160 W/m²
Wind Speed: 15 km/h
Inlet Temperature: 10 °C

Ambient Temperature: -10 °C

Tube Spacing: 25 cm

Initial Temperature: -10 °C

Flow Rate: 10 L/min

Bridge Deck Length: 3.2 m

Surface Prediction and Feasibility Analysis

TASK 04-02

Machine Learning Model Development

Surface Prediction and Feasibility **Analysis**

TASK 04-03

Surface Prediction and Feasibility Analysis

Phase II

What's Next: Life-Cycle Cost-Benefit Analysis

What's Next: Possible Field Implementation

Planned Projects for 2028-2029

Thank You!

Feasibility Analysis: Data Collection and Preprocessing

Without Tubing

Parameter Value Values Range Ambient Temperature, °C 0 to -20 0, -5, -10, -15, -20 Initial Temperature, °C -10 to +20 of Ambient -10, -5, 0, 5, 10, 20 of Temperature Ambient Temperature Wind Speed, km/h 0 to 40 0, 5, 10, 20, 30, 40 Solar Radiation, W/m2 0 to 490 0, 160, 260, 360, 490 Bridge Length, m 1.6 to 4.8 1.6, 3.2, 4.8 **Total Number of Models** 555

Ground Source
Heat Pump
(GSHP) system for
Bridge Deck
Deicing

With Tubing

Parameter	Value	
	Range	Values
Ambient Temperature, °C	0 to -20	0, -5, -10, -15, -20
Initial Temperature, °C	-10 to +20 of Ambient Temperature	-10, -5, 0, 5, 10, 20 of Ambient Temperature
Wind Speed, km/h	0 to 40	0, 5, 10, 20, 30, 40
Solar Radiation, W/m ²	0 to 490	0, 160, 260, 360, 490
Inlet Temperature, °C	8 to 50	8, 10, 50
Fluid Flowrate, L/min	5 to 25	5, 10, 25
Tube Spacing, cm	20 to 30	20, 30
Bridge Length, m	1.6 to 4.8	1.6, 3.2, 4.8
Total Number of Models	1836	